Lógica y Computabilidad Segundo Cuatrimestre de 2023 Segundo Parcial

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

	Nombre y Apellido:	Nota:			
⊳ Resolver cada ejercicio en una hoja separada .	• •				
⊳ Poner nombre y LU en todas las hojas.					
⊳ Se debe justificar <u>todas</u> las respuestas.					
⊳ El examen es a libro abierto y puede usarse lo	Libreta Universitaria:	Ej. 1	Ej. 2	Ej. 3	Ej. 4
demostrado en clase o en ejercicios de las guías con					
referencias claras y precisas de dónde vienen.				, ,	
⊳ El examen se aprueba con al menos 2 ejercicios				, ,	
completamente bien resueltos y se promociona con				, ,	
al menos 3 en esa condición.				, ,	
				, ,	

Ejercicio 1. Sea Γ un conjunto de fórmulas de la lógica proposicional y para cada $n \in \mathbb{N}$ sea $\Gamma_n = \{ \varphi \mid \text{ existe una demostración de tamaño } \leq n \text{ de } \varphi \text{ por } \Gamma \}.$

- i. Demuestre que $con(\Gamma) = \bigcup_{n \in \mathbb{N}} \Gamma_n$.
- ii. Demuestre que Γ es consistente si y solo si Γ_n es consistente para todo n.

Ejercicio 2. Dada una interpretación \mathcal{I} con universo A, decimos que una función $f:A\to A$ es expresable si $graph(f)=\{(x,f(x))\mid x\in A\}$ es expresable. Demuestre que la función suc : $\mathbb{N}\to\mathbb{N}$ es expresable en el lenguaje con igualdad $\mathcal{L}=\{\leq,=\}$, con \leq interpretándose de la manera usual.

Ejercicio 3. Considerar \mathcal{L} un lenguaje de primer orden con igualdad, f un símbolo de función binario, y ℓ un símbolo de función unario. Sea SQ_{Str} la axiomatización que extiende a SQ con las siguientes fórmulas:

$$\begin{array}{ll} \mathbf{A1} & \forall x, \forall y, \forall z, f(f(x,y),z) = f(x,f(y,z)) \\ \mathbf{A2} & \forall x \forall y, \ell(f(x,y)) = \ell(f(y,x)) \\ \mathbf{A3i} & \exists x_1 \ldots \exists x_i \left(todosDistintos(x_1,\ldots,x_i)\right) & \text{para } i \geq 2 \\ \end{array}$$

Demostrar que SQ_{Str} es correcta pero no es completa con respecto a la estructura $\langle \{0,1\}^+,\cdot,||\rangle$, donde $\{0,1\}^+$ denota el conjunto de palabras de longitud de positiva constituidas por ceros y unos, · denota la concatenación de palabras, y, si ω es una palabra, $|\omega|$ denota la longitud de esta palabra escrita en binario, sin poner ceros innecesarios a la izquierda. Por ejemplo, $01110 \cdot 111 = 01110111$. También tenemos |0110| = 100, ya que la longitud de 0110 es 4, que en binario se escribe como 100 (notar que |0110| NO es 0100).

Ejercicio 4. Dada una función unaria f, decimos que es apenas no inyectiva si el conjunto $\{(x,y) \mid x \neq y \land f(x) = f(y)\}$ es finito.

Demostrar que dado un lenguaje con igualdad y un símbolo de función unario, no es expresable en primer orden la proposición "f es una función apenas no inyectiva".