Teoría de Lenguajes Preguntas de examen final Noviembre 2023

Ejercicio 1. Dar un algoritmo que decida si dos expresiones regulares denotan el mismo lenguaje. Justificar la correctitud. Analizar la complejidad computacional de peor caso.

Ejercicio 2. Demostrar que dada una una gramática libre de contexto G sin símbolos inútiles y no recursiva a derecha. hay existe una constante c tal que que para todo par de símbolos no terminales A, B, para toda cadena de terminales w y para toda cadena de t

si $A \stackrel{i}{\underset{B}{\Rightarrow}} \alpha B w$, entonces $i <= c^{|w|+2}$.

Ejercicio 3. Dar dos algoritmos distintos para determinar si el lenguaje aceptado por un autómata finito dado es el conjunto de todas las cadenas del alfabeto. Jstificar cada uno y dar su complejidad algorítmica.

Ejercicio 4. Dar un algoritmo que determine si un lenguaje regular dado es infinito. Justificar y dar la complejidad del algoritmo en el peor caso.

Ejercicio 5. ¿Cuántos autómatas finitos deterministas con dos estados pueden construirse sobre el alfabeto $\{0,1\}$?

¿Cuántos autómatas finitos no deterministicos con dos estados pueden construirse sobre el alfabeto $\{0,1\}$?

¿Cuántos autómatas de pila con dos estados pueden construirse con alfabeto de entrada A, alfabeto de pila Z, y una cantidad máxima M símbolos en cada transición ?

Ejercicio 6. Fijados los alfabetos Δ y Γ , ¿Cuántos autómatas de pila distintos $(Q, \Sigma, \Delta, \Gamma, q_0, F)$ determinístiscos hay, Si Q tiene 5 estados y en cada transición se escriben en la pila 0, 1 o 2 símbolos? ¿Y cuántos no determinísticos?

Ejercicio 7. Dar la definición de gramática libre de contexto recursiva a derecha. Dar un ejemplo. Dar el algoritmo de eliminación de recursión a derecha (inmediata y no inmediata), su justificación de correctitud, y su complejidad computacional.

Ejercicio 8. Dar el algoritmo de pasar a forma normal 3-chomsky. Justificar correctitud y dar la complejidad computacional.

 $A \rightarrow a$

 $A \to BC$

 $A \to BCD$

No se permiten producciones $A \to B$.

donde A, B, C, D son no terminales y a es terminal.

Entonces son 3-Chomsky

 $S \to ABC$

 $A \to BDE$

 $A \rightarrow a$

 $A \to BC$

No son 3-Chomsky

 $A \to B$

 $A \rightarrow ABCDE$ tampoco es 3-Chmsky

A - > abcedef tampoco es 3-Chomsky

Ejercicio 9. Consideremos el transductor finito dado por una máquina de Mealy $(S, \Sigma, \Gamma, \delta, \gamma, S_0, S)$

S es un conjunto finito de estados

 Σ es el alfabeto de entrada

 Γ es el alfabeto de salida

 $\delta: S \times \Sigma \to S$ es la función de transición.

 $\gamma:S\times\Sigma\to\Gamma$ mapea un estado y un símbolo de entrada a un símbolo de salida

 S_0 es un estado inicial

Todos lso esatdos de S son finales.

Adaptar el algoritmo de minimizacion de autómatas finitos a una minimización de maquina Mealy. Ayuda: Definir la relación de equivalencia considerando la función δ extendida y la función gamma extendida.

Ejercicio 10.

a) Demostrar lo siguiente: Si un autómata finito es determinístico , accesible, coaccesible y codeterminista entonces es mínimo.

accesible: Todos los estados son accesibles desde el estado inicial.

co-accesible : Todos los estados tienen un camino en el autómata hasta un estado final co-deterministico: hay un único estado final y no hay transiciones $\delta(p, a) = q$ y $\delta(r, a) = q$,

b) Demostrar que la recíproca de la afirmación en a) no siempre es cierta.

Ejercicio 11. Demostrar que dada una gramática regular a derecha se puede obtener una gramática regular a izquierda equivalente.

Ejercicio 12. Dado un autómata finito no determinístico A pero sin transiciones lambda dar un algoritmo que construye el autómata finito no determinístico que acepta el lenguaje $L(A)L(A)^R$. Demostrar por inducción en el largo de las cadenas de que el algoritmo es correcto. Determinar la complejidad computacional del algoritmo.

Ejercicio 13. Definimos un autómata de pila de doble entrada $P = (Q, \Sigma, \tau, \Gamma, \delta, q_0, Z_0, F)$ donde $\delta: Q \times \Sigma \bigcup \{\lambda\} \times \tau \{\lambda\} \times \Gamma \to \mathcal{P}(Q \times \Gamma^*).$

La función δ es tal que las transiciones lambda ocurren en ambas cintas a la vez. Es decir, no hay transiciones que lean de una cinta y no de la otra.

Demostrar que para todo automata de pila de doble entrada que acepta por estado final siempre se puede encontrar otro equivalente que acepta por pila vacía.

Ejercicio 14. Dada dado un automata de pila P deterministico dar el autómata de pila no determinístico que acepta $L' = \{wv^R : w, v \in L(P)\}$ donde w^R es la reversa de w, es decir si w = abc entonces $w^R = cba$.

Ejercicio 15. Mostrar que si L es un lenguaje aceptado por un autómata de pila determinístico por pila vacía entonces ninguna palabra de L es prefijo propio de otra palabra de L. ¿Vale lo mismo en caso de que el autómata de pila sea no-determinístico?

Ejercicio 16. Dado R un lenguaje regular, y dado L un lenguaje libre de contexto deterministico, ¿Es decidible si L=R? Es decir, ¿ hay un algoritmo capaz de decidir la igualdad? En caso de que sí, dar tal algoritmo y justificar. En caso de que no, dar la demostración de indecibilidad.

Respuesta: Teorema 10.6 Hopcroft 1976

Ejercicio 17. Dado R un lenguaje Regular, y dado L un lenguaje libre de contexto determinístico, ¿Es decidible si R está incluido en L ?

Respuesta: Teorema 10.6 Hopcroft 1976

Ejercicio 18. Dar un algoritmo que transforma una gramatica LL(k) en otra LL(k) de la forma $A \to a\alpha$ y $A \to \lambda$.

donde a es terminal y A es no terminal. Argumentar por qué todas las producciones admiten esta transformacion (la gramática original no es recursiva a izquierda).

Ejercicio 19. Considerar la gramatica $S \to SS|a$

Contar la cantidad de árboles de derivacion más a la izquierda de a^n

AYUDA: Ensayar con n = 1, n = 2, n = 3, n = 4n = 5 hasta conseguir la forma general.

Solucion $X_n = \sum_{i+j=n, i \text{ j distintos de } 0} X_i X_j \text{ con } X_1 = 1 \text{ y } X_{n+1} = comb(2n, n)/(n+1)$

Ejercicio 20. Dar un algoritmo que transforme cada gramatica libre de contexto G en otra G' que reconoce el mismo lenguaje pero es tal que si $X_1...X_k$ es el lado derecho de una producción entonces todos los símbos $X_1,...,X_k$ son distintos. Justificar la correctitud y dar la complejidad del algoritmo.

Ejercicio 21. Dar un algoritmo que transforme cada gramática libre de contexto G sin producciones $A \to \lambda$ en otra G' que reconoce el mismo lenguaje pero es tal que ninguna producción tiene un lado derecho con dos no-terminales seguidos. Justificar la correctitud y dar la complejidad del algoritmo.

Ayuda: Pasar primero a forma normal de Greibach.

Ejercicio 22. Dar un algoritmo que transforme cada gramatica libre de contexto G sin producciones $A \to \lambda$ en otra G' que reconoce el mismo lenguaje pero tal que cada producción es de la forma $A \to a\alpha$, con a un símbolo terminal y α una cadena de no-terminales (puede ser vacía). Justificar la correctitud y dar la complejidad del algoritmo.

Ayuda: Definir un orden parcial < entre los no terminales de G donde si $A \to B\beta$ entonces A < B. Iterar cambiando la gramática donde cada produccion con cabeza A tenga un cuerpo que sea un terminal o con un no-terminal B donde A < B.

Otra Ayuda: esta es la forma normal de Greibach.

Ejercicio 23. Una gramatica libre de contexto es lineal si todas las producciones son de la forma $A \to aBx$ y $A \to w$, con $a \in T$, $x, w \in T^*$, y $A, B \in N$.

Mostrar que todo lenguaje lineal sin la palabra vacía tiene una gramática donde las producciones son de la forma $A \to aB$, $A \to Ba$ o $A \to a$.

Ejercicio 24. Dada G = (N, T, P, S) definir un orden lineal de los símbolos en N, $A_1, < A_2 < ... < A_n$ que respete el orden parcial inducido por la relación de derivación: si $A \stackrel{+}{\Rightarrow} B\alpha$ entonces A < B.

Dar la complejiiad del algoritmo de eliminación de la recursión a izquierda que opera sobre este nuevo orden.

Ejercicio 25. Dar un algoritmo que dado un automata finito que reconoce un lenguaje infinito, lo transforma en otro que reconoce el mismo lenguaje y tiene al menos el doble de estados que el minimo. Demostrar que el algoritmo es correcto.

Ejercicio 26. Dar un algoritmo que codeterminice un automata finito

Ejercicio 27. Dar un algoritmo que decide si un automata de pila determinisitico reconoce el lenguaje Σ^* .

Lema 8.6 Aho Ullman Vol 1