Métodos Numéricos

1er Cuatrimestre 2024

DEPARTAMENTO DE COMPUTACION Fredrid de Circulas Success y Notrodas - Ul

Recuperatorio 1er Parcial

(03/07/2023)

Total de hojas entregadas (sin enunciado): 6

1)

2)

3)

4)

	ountajes por resolución de ej	ercicios y condicio	nes generales de corre	eccion
Ej. 1 23	Ej. 2 24	Ej. 3	Ej. 4 21	Final 90
El examen se aprueba con 60 puntos.		Justificar todas las respuestas		
Resolver los ejercicios en hojas separadas. Incluir LU y nombre en hojas y enunciado.		Puede hacerlo citando resultados de la teórica o la práctica. Para ejercicios de la guía, consulte.		

Ejercicio 1 (28 puntos). Sea $A \in \mathbb{R}^{n \times n}$ y sea $k = \min\{h \in \mathbb{N} \mid Nu(A^h) = Nu(A^{h+1})\}$. Demostrar que:

- a) (6 puntos) Si $Nu(A) \cap Im(A^j) \neq \{0\}$ con $j \in \mathbb{N}$ entonces $Nu(A^j) \subsetneq Nu(A^{j+1})$. Concluir que j < k.
- b) (10 puntos) Si $\{v_1, \ldots, v_m\}$ es una base de $Im(A^k)$, donde $m = rg(A^k)$, entonces $\{A^j v_1, \ldots, A^j v_m\}$ también lo es, para cualquier $j \in \mathbb{N}$.
- c) (6 puntos) $Nu(A^k) \cap Im(A^k) = \{0\}$. Concluir que $Nu(A^k) \oplus Im(A^k) = \mathbb{R}^n$. d) (6 puntos) Calcular k y dar bases de $Im(A^k)$ y $Nu(A^k)$ para la matriz $A = \begin{pmatrix} -3 & 1 & 1 \\ -9 & 3 & 4 \\ 0 & 0 & -2 \end{pmatrix}$.

Sugerencia: Recordar que $Nu(A^j) \subseteq Nu(A^{j+1})$ y que $Im(A^{j+1}) \subseteq Im(A^j)$ para cualquier $j \in \mathbb{N}$.

Ejercicio 2 (24 puntos). Considere $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times k}$, $C \in \mathbb{R}^{k \times n}$, $D \in \mathbb{R}^{k \times k}$ y $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

- a) (8 puntos) Probar que si A es inversible y A y $D-CA^{-1}B$ tienen factorización LU, entonces M tiene factorización LU. ¿Vale la vuelta?
- b) (8 puntos) Suponiendo la premisas del item (a), escribir det(M) en términos de A, B, C y D. Sugerencia: Recordar que si L tiene unos en la diagonal, entonces det(LU) = det(U).
- c) (8 puntos) Probar que $||M||_{\infty} = \max(||(A, B)||_{\infty}, ||(C, D)||_{\infty}) \leq \max(||A||_{\infty} + ||B||_{\infty}, ||C||_{\infty} + ||D||_{\infty}).$

Ejercicio 3 (20 puntos). Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica y definida positiva. Probar que:

- a) (8 puntos) A es no singular y $a_{ii} > 0$ para $1 \le i \le n$. ¿Vale la vuelta?
- b) (6 puntos) Todas las submatrices principales de A son definidas positivas.
- c) (6 puntos) $|a_{ij}|^2 \leqslant a_{ii} \, a_{jj}$ para todo $1 \leqslant i, j \leqslant n$. Deducir que el elemento de módulo máximo de A está en la diagonal.

Ejercicio 4 (24 puntos). Sea la siguiente matriz $A = \begin{pmatrix} 3 & -1 & 0 \\ -4 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

- a) Construya y explicite las descomposiciones QR de A considerando:
 - i) (7 puntos) que sólo se utilicen matrices de Householder.
 - ii) (7 puntos) que sólo se utilicen matrices de Givens;
- b) (10 puntos) Construya la descomposición QR tal que la diagonal de R sea no negativa. ¿Es la matriz ortogonal de Householder, de Givens o ninguna de las dos? Si es de Householder, dé el vector que la define, si es de Givens, dé el ángulo que la define.