Diferencia entre revisiones de «Práctica 5 (Métodos Numéricos)»

De Cuba-Wiki
(→‎Ejercicio 2: AGregué formato math)
 
Línea 3: Línea 3:


==Ejercicio 2==
==Ejercicio 2==
'''Sean a, b <- R^n fijos. ¿Qué número real t hace que ||a t * b||2 sea mínimo'''<br>
'''Sean a, b <- R^n fijos. ¿Qué número real t hace que <math>\lVert a-t*b\rVert_2</math> sea mínimo'''<br>
Minimizar ||a t * b|| es lo mismo que minimizar ||a t * b|| ^ 2 pues la raiz es monotona y creciente. Llamemos a esta funcion f(t) y minimicemosla: <br>
Minimizar <math>\lVert a-t*b\rVert</math> es lo mismo que minimizar <math>\lVert a-t*b\rVert^2</math> pues la raiz es monotona y creciente. Llamemos a esta funcion <math>f(t)</math> y minimicemosla: <br>
f(t) = ||a − t * b|| ^ 2 = Sum [i = 0; i < n] (a[i] − t * b[i]) ^ 2 <br>
f(t) = ||a − t * b|| ^ 2 = Sum [i = 0; i < n] (a[i] − t * b[i]) ^ 2 <br>
Para minimizarla, derivemosla, y hallemos el minimo en f'(t) = 0 y f''(t) > 0. <br>
Para minimizarla, derivemosla, y hallemos el minimo en f'(t) = 0 y f''(t) > 0. <br>
Línea 11: Línea 11:


f'(t) = 0 ==> Sum [i = 0; i < n] 2 * (a[i] − t * b[i]) * b[i] = 0 <==> <br>
f'(t) = 0 ==> Sum [i = 0; i < n] 2 * (a[i] − t * b[i]) * b[i] = 0 <==> <br>
Sum [i = 0; i < n] (a[i] * b[i] − t * b[i] * b[i]) = 0 <==> <br>
Sum [i = 0; i < n] (a[i] * b[i] − t * b[i] * b[i]) = 0 <==> <br>
Sum [i = 0; i < n] (a[i] * b[i]) − t * Sum [i = 0; i < n] b[i]^2 = 0 <==> <br>
Sum [i = 0; i < n] (a[i] * b[i]) − t * Sum [i = 0; i < n] b[i]^2 = 0 <==> <br>

Revisión del 03:38 19 nov 2006

Ejercicio 1

¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?

Ejercicio 2

Sean a, b <- R^n fijos. ¿Qué número real t hace que sea mínimo
Minimizar es lo mismo que minimizar pues la raiz es monotona y creciente. Llamemos a esta funcion y minimicemosla:
f(t) = ||a − t * b|| ^ 2 = Sum [i = 0; i < n] (a[i] − t * b[i]) ^ 2
Para minimizarla, derivemosla, y hallemos el minimo en f'(t) = 0 y f(t) > 0.
f'(t) = Sum [i = 0; i < n] 2 * (a[i] − t * b[i]) * b[i]
f(t) = Sum [i = 0; i < n] 2 * b[i] ^ 2

f'(t) = 0 ==> Sum [i = 0; i < n] 2 * (a[i] − t * b[i]) * b[i] = 0 <==>

Sum [i = 0; i < n] (a[i] * b[i] − t * b[i] * b[i]) = 0 <==>
Sum [i = 0; i < n] (a[i] * b[i]) − t * Sum [i = 0; i < n] b[i]^2 = 0 <==>
Sum [i = 0; i < n] (a[i] * b[i]) = t * Sum [i = 0; i < n] b[i]^2 <==>
Sum [i = 0; i < n] (a[i] * b[i]) = t * Sum [i = 0; i < n] b[i]^2 <==>
Sum [i = 0; i < n] (a[i] * b[i]) / Sum [i = 0; i < n] b[i] ^ 2 = t

Notese que necesitamos que para poder pasar dividiendo la sumatoria, y para que . Entonces para cualquier t = Sum [i = 0; i < n] (a[i] * b[i]) / Sum [i = 0; i < n] b[i] ^ 2 es el que minimiza la funcion, y para cualquier t da lo mismo.

Ejercicio 4

Sea A � IRn×m. Se define el espacio columna de A como el subespacio de IRn generado por las columnas de A y el espacio fila de A como el subespacio de IRm generado por las filas de A.

(a)

Probar que el espacio columna de A es Im(A).

(d)

Probar que el espacio fila de A es Nu(A)^bottom.

(c)

Probar que Im(A)^bottom = Nu(A^t).