Diferencia entre revisiones de «Práctica 5 (Métodos Numéricos)»
(No se muestran 31 ediciones intermedias del mismo usuario) | |||
Línea 1: | Línea 1: | ||
==Ejercicio 1== | ==Ejercicio 1== | ||
'''¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?'''< | '''¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?'''<BR> | ||
<math> S = \{ x + y - z = 0 \}</math>. El vector normal al plano es (1, 1, -1).<BR> | |||
Entonces buscamos un <math>(2, 1, 0) + \lambda (1, 1, -1)</math> que pertenezca a S. | |||
<math> (2, 1, 0) +\lambda (1, 1, -1) = (2 + \lambda, 1 + \lambda, -\lambda) </math> esta en <math>S \Longleftrightarrow 2 + \lambda + 1 + \lambda - (-\lambda) = 0 \Longleftrightarrow 3 + 3 \lambda = 0 \Longleftrightarrow \lambda = -1 \Longrightarrow </math> El punto mas cercano es <math>(2, 1, 0) + -1 (1, 1, -1) = (1, 0, 1)</math> | |||
==Ejercicio 2== | ==Ejercicio 2== | ||
'''Sean a, b | '''Sean <math>a, b \in \mathbb{R}^n</math> fijos. ¿Qué número real t hace que <math>\lVert a-t*b\rVert_2</math> sea mínimo'''<br> | ||
Minimizar <math>\lVert a-t*b\rVert</math> es lo mismo que minimizar <math>\lVert a-t*b\rVert^2</math> pues la raiz es monotona y creciente. Llamemos a esta funcion <math>f(t)</math> y | Minimizar <math>\lVert a-t*b\rVert</math> es lo mismo que minimizar <math>\lVert a-t*b\rVert^2</math> pues la raiz es monotona y creciente. Llamemos a esta funcion <math>f(t)</math> y minimizemosla: <br> | ||
f(t) = ||a | <math>f(t) = ||a - t * b|| ^ 2 = \sum_{i = 0}^{n} (a_i - t b_i)^2 </math><br> | ||
Para | Para hallar el minimo de esta funcion, la derivamos y buscamos donde es igual a 0. | ||
<math> f'(x) = \left(\sum_{i = 0}^{n} (a_i - t b_i)^2\right)' </math><br> | |||
<math> = \sum_{i = 0}^{n} -2 b_i (a_i - t b_i) </math><br> | |||
<math> = \sum_{i = 0}^{n} -2 b_i a_i - t -2 b_i^2 = 0</math><br> | |||
<math> \Longleftrightarrow \sum_{i = 0}^{n} -2 b_i a_i - \sum_{i = 0}^{n} t -2 b_i^2 = 0</math><br> | |||
<math> \Longleftrightarrow \sum_{i = 0}^{n} -2 b_i a_i = \sum_{i = 0}^{n} t -2 b_i^2 </math><br> | |||
<math> \Longleftrightarrow \sum_{i = 0}^{n} b_i a_i = t \sum_{i = 0}^{n} b_i^2 </math><br> | |||
<math> \Longleftrightarrow \frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2} = t </math><br> | |||
f'( | Para poder afirmar que es minimo, en realidad falta calcular <math>f''(\frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2})</math> y ver que es mayor a 0, pero 0 ganas... | ||
==Ejercicio 3== | |||
La función <math> f(x) = f(x_1, x_2, ..., x_n) = \| A x - b \| </math>es una función diferenciable de n variables, que tiene un mínimo (absoluto) sólo si <math>\nabla f = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m})^t = 0</math>. Calcular <math>\nabla f</math> y demostrar que <math>\nabla f(x) = 0 \Longleftrightarrow si \ A^tAx = A^tb</math> (ecuaciones normales).<BR> | |||
NOTA: Por favor, si alguien sabe hacer este ejercicio, subalo... | |||
==Ejercicio 4== | |||
'''Sea <math>A \in \mathbb{R}^{nxm}</math>. Se define el espacio columna de A como el subespacio de <math>\mathbb{R}^n</math> generado por las columnas de A y el espacio fila de A como el subespacio de <math>\mathbb{R}^n</math> generado por las filas de A.''' | |||
====Ejercicio 4. a==== | |||
'''Probar que el espacio columna de A es <math>Im(A)</math>.'''<BR> | |||
<math>v \in Im(A) \Longleftrightarrow \exists w / Aw = x</math>. | |||
<math>\Longleftrightarrow x_i = \sum_{j = 1}{n}A_{ij} wj</math>. | |||
<math>\Longleftrightarrow x = \sum_{j = 1}{n}wj A_{*j}</math>. | |||
<math>\Longleftrightarrow x \in espacio \ columnas \ de \ A</math>. | |||
====Ejercicio 4. d==== | |||
'''Probar que el espacio fila de A es <math>Nu(A)^{\bot}</math>.'''<BR> | |||
La idea es que alguien pertenece a <math>Nu(a)</math> solamente si dicho vector da 0 contra todas las filas de <math>A</math>. Por lo tanto es ortogonal a una base del espacio filas de <math>A</math>, por lo que pertenece a <math>Nu(A)^{\bot}</math>. La vuelta es si pertenece a <math>Nu(A)^{\bot}</math>, entonces va a dar 0 contra todas las filas de A. | |||
====Ejercicio 4. c==== | |||
'''Probar que <math>Im(A)^{\bot} = Nu(A^t)</math>.'''<BR> | |||
<math>Im(A)</math> es el espacio columna de A. Que es el espacio fila de <math>A^t</math>. Y el espacio fila de una matriz es ortogonal a su nucleo por lo que probamos antes<math>\Box</math>. | |||
==Ejercicio 5== | |||
'''Sean u y v vectores ortogonales en <math>\mathbb{R}</math> entonces <math> \| u + v \|_2^2 = \| u \|_2^2 + \| u \|_2^2 </math> (Teorema de Pitágoras).'''<BR> | |||
<math> \| u + v \| _2^2 = (u + v) \times (u + v)</math><BR> | |||
<math>= u \times (u + v) + v \times (u + v) </math><BR> | |||
<math>= (u \times u) + (u \times v) + (v \times u) + (v \times v) </math>.<BR> | |||
Como u y v son ortogonales, entonces <math>(v \times u) = 0</math> y luego: <math> \| u + v \| _2^2 = (u \times u) + (v \times v) = \| u \| _2 + \| u \| _2</math><BR> | |||
==Ejercicio 6== | |||
'''Demostrar que si P es una proyección ortogonal sobre el subespacio <math>S \in \mathbb{R}^n</math>, entonces para todo <math> x \in \mathbb{R}^n, (I - P)x \in S^{\bot}</math>.'''<BR> | |||
NOTA: Si alguien me dice que es una proyección ortogonal (la definicion de una), intento hacerlo... | |||
Ver | |||
http://mathworld.wolfram.com/ProjectionMatrix.html | |||
o | |||
http://planetmath.org/encyclopedia/Projection.html | |||
Revisión del 00:18 3 dic 2006
Ejercicio 1
¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle S = \{ x + y - z = 0 \}}
. El vector normal al plano es (1, 1, -1).
Entonces buscamos un Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (2, 1, 0) + \lambda (1, 1, -1)}
que pertenezca a S.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (2, 1, 0) +\lambda (1, 1, -1) = (2 + \lambda, 1 + \lambda, -\lambda) }
esta en Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle S \Longleftrightarrow 2 + \lambda + 1 + \lambda - (-\lambda) = 0 \Longleftrightarrow 3 + 3 \lambda = 0 \Longleftrightarrow \lambda = -1 \Longrightarrow }
El punto mas cercano es Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (2, 1, 0) + -1 (1, 1, -1) = (1, 0, 1)}
Ejercicio 2
Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a, b \in \mathbb{R}^n}
fijos. ¿Qué número real t hace que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \lVert a-t*b\rVert_2}
sea mínimo
Minimizar Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \lVert a-t*b\rVert}
es lo mismo que minimizar Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \lVert a-t*b\rVert^2}
pues la raiz es monotona y creciente. Llamemos a esta funcion Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(t)}
y minimizemosla:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(t) = ||a - t * b|| ^ 2 = \sum_{i = 0}^{n} (a_i - t b_i)^2 }
Para hallar el minimo de esta funcion, la derivamos y buscamos donde es igual a 0.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f'(x) = \left(\sum_{i = 0}^{n} (a_i - t b_i)^2\right)' }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle = \sum_{i = 0}^{n} -2 b_i (a_i - t b_i) }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle = \sum_{i = 0}^{n} -2 b_i a_i - t -2 b_i^2 = 0}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow \sum_{i = 0}^{n} -2 b_i a_i - \sum_{i = 0}^{n} t -2 b_i^2 = 0}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow \sum_{i = 0}^{n} -2 b_i a_i = \sum_{i = 0}^{n} t -2 b_i^2 }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow \sum_{i = 0}^{n} b_i a_i = t \sum_{i = 0}^{n} b_i^2 }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow \frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2} = t }
Para poder afirmar que es minimo, en realidad falta calcular Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f''(\frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2})} y ver que es mayor a 0, pero 0 ganas...
Ejercicio 3
La función Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) = f(x_1, x_2, ..., x_n) = \| A x - b \| }
es una función diferenciable de n variables, que tiene un mínimo (absoluto) sólo si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \nabla f = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m})^t = 0}
. Calcular Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \nabla f}
y demostrar que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \nabla f(x) = 0 \Longleftrightarrow si \ A^tAx = A^tb}
(ecuaciones normales).
NOTA: Por favor, si alguien sabe hacer este ejercicio, subalo...
Ejercicio 4
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \in \mathbb{R}^{nxm}} . Se define el espacio columna de A como el subespacio de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}^n} generado por las columnas de A y el espacio fila de A como el subespacio de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}^n} generado por las filas de A.
Ejercicio 4. a
Probar que el espacio columna de A es Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Im(A)}
.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v \in Im(A) \Longleftrightarrow \exists w / Aw = x}
.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow x_i = \sum_{j = 1}{n}A_{ij} wj}
.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow x = \sum_{j = 1}{n}wj A_{*j}}
.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Longleftrightarrow x \in espacio \ columnas \ de \ A}
.
Ejercicio 4. d
Probar que el espacio fila de A es Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Nu(A)^{\bot}}
.
La idea es que alguien pertenece a Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Nu(a)}
solamente si dicho vector da 0 contra todas las filas de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A}
. Por lo tanto es ortogonal a una base del espacio filas de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A}
, por lo que pertenece a Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Nu(A)^{\bot}}
. La vuelta es si pertenece a Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Nu(A)^{\bot}}
, entonces va a dar 0 contra todas las filas de A.
Ejercicio 4. c
Probar que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Im(A)^{\bot} = Nu(A^t)}
.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Im(A)}
es el espacio columna de A. Que es el espacio fila de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A^t}
. Y el espacio fila de una matriz es ortogonal a su nucleo por lo que probamos antesError al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Box}
.
Ejercicio 5
Sean u y v vectores ortogonales en Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}}
entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \| u + v \|_2^2 = \| u \|_2^2 + \| u \|_2^2 }
(Teorema de Pitágoras).
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \| u + v \| _2^2 = (u + v) \times (u + v)}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle = u \times (u + v) + v \times (u + v) }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle = (u \times u) + (u \times v) + (v \times u) + (v \times v) }
.
Como u y v son ortogonales, entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (v \times u) = 0}
y luego: Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \| u + v \| _2^2 = (u \times u) + (v \times v) = \| u \| _2 + \| u \| _2}
Ejercicio 6
Demostrar que si P es una proyección ortogonal sobre el subespacio Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle S \in \mathbb{R}^n}
, entonces para todo Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x \in \mathbb{R}^n, (I - P)x \in S^{\bot}}
.
NOTA: Si alguien me dice que es una proyección ortogonal (la definicion de una), intento hacerlo...
Ver
http://mathworld.wolfram.com/ProjectionMatrix.html
o