Diferencia entre revisiones de «Final 09/03/2017 (Paradigmas)»

De Cuba-Wiki
Sin resumen de edición
Sin resumen de edición
Línea 4: Línea 4:


b) <math> \exists M \in \lambda^{bn}, \ \emptyset \vdash M : \sigma </math> es derivable, y hay un valor <math> V </math> tal que <math> fix \ fix \ M \twoheadrightarrow V </math> y <math> fix \ M \twoheadrightarrow V </math>
b) <math> \exists M \in \lambda^{bn}, \ \emptyset \vdash M : \sigma </math> es derivable, y hay un valor <math> V </math> tal que <math> fix \ fix \ M \twoheadrightarrow V </math> y <math> fix \ M \twoheadrightarrow V </math>


3. Sea un lenguaje orientado a objetos donde no se permite sobrecarga, decidir si las siguientes situaciones son admitidas por el sistema de tipos o no. Justificar.
3. Sea un lenguaje orientado a objetos donde no se permite sobrecarga, decidir si las siguientes situaciones son admitidas por el sistema de tipos o no. Justificar.
a) Se sobrescribe el método de una clase y se reemplaza el tipo del argumento por un subtipo del tipo que tenía en la superclase.
a) Se sobrescribe el método de una clase y se reemplaza el tipo del argumento por un subtipo del tipo que tenía en la superclase.
b) Se tiene un atributo de tipo ref t (es un atributo mutable), se lo sobrescribe en una subclase por un tipo ref s, donde s es subtipo de t.
b) Se tiene un atributo de tipo ref t (es un atributo mutable), se lo sobrescribe en una subclase por un tipo ref s, donde s es subtipo de t.

Revisión del 03:59 11 mar 2017

1. Para cada afirmación decidir si es verdadera o falsa y justificar:

a) término M , si es derivable, entonces existe un valor tal que

b) es derivable, y hay un valor tal que y


3. Sea un lenguaje orientado a objetos donde no se permite sobrecarga, decidir si las siguientes situaciones son admitidas por el sistema de tipos o no. Justificar.

a) Se sobrescribe el método de una clase y se reemplaza el tipo del argumento por un subtipo del tipo que tenía en la superclase.

b) Se tiene un atributo de tipo ref t (es un atributo mutable), se lo sobrescribe en una subclase por un tipo ref s, donde s es subtipo de t.