Diferencia entre revisiones de «Final 07/03/2014 (Análisis II)»

De Cuba-Wiki
 
(No se muestran 8 ediciones intermedias de 3 usuarios)
Línea 1: Línea 1:
{{Back|Análisis II}}
{{Back|Análisis II}}
(Creo que era así)
== Ejercicio 1 ==
Sea f: R2 --- R C1 tal que
Sea <math> f: \mathbb{R}^2 \rightarrow \mathbb{R}</math>, <math>f \in C^1</math> tal que:
a. f(1,2)<0
<ol style="list-style-type:lower-roman">
b. Sea Pk con k perteneciente a los naturales tal que lim f(Pk)=infinito cuando n tiende a infinito
  <li> <math>f(1,2)\, < \, 0 </math> </li>
  <li> Existe una sucesión <math> \{Pk\}_{k \in \mathbb{N}} </math> tal que <math> lim \, f(Pk)=+\infty</math> cuando <math>n \rightarrow + \infty </math>. </li>
</ol>


probar que:
Probar que:
a. existe p perteneciente a R2 tal que f(p)=0
<ol style="list-style-type:lower-latin">
b. Si f(p)=f(q)=0 para q diferente de p entonces el grad de f en un punto po (intermedio entre el vector que une q con p) es perpendicular al vector que une q con p
  <li> Existe <math>p \in \mathbb{R}^2</math> tal que <math>f(p)=0</math>. </li>
  <li> Si existen dos puntos <math>p\neq q \in \mathbb{R}^2</math> tales que <math>f(p)=f(q)=0</math>, entonces existe un punto <math>p_0 \in \mathbb{R}^2</math> tal que <math>\nabla f (p_0)</math> es perpendicular al vector que une <math>q</math> con <math>p</math>. </li>
</ol>


== Ejercicio 2 ==
== Ejercicio 2 ==
Sea <math>f:\[0,+\infty )\rightarrow \mathbb{R}</math> una función continua, que cumple las siguentes propiedades:
Sea <math>f:[0,+\infty )\rightarrow \mathbb{R}</math> una función continua, que cumple las siguentes propiedades:


<ol style="list-style-type:lower-roman">
<ol style="list-style-type:lower-roman">
   <li> <math>f(x) \geq 0</math> para todo <math>x\in \[0,+\infty )</math></li>
   <li> <math>f(x) \geq 0</math> para todo <math>x\in [0,+\infty )</math></li>
   <li> Existe un <math> a \> 0 </math> tal que <math> f(x) \geq a </math> <math>\forall x \in \left [\dfrac{1}{2}\, , \, 1\right ]</math>. </li>
   <li> Existe un <math> a \> 0 </math> tal que <math> f(x) \geq a </math> <math>\forall x \in \left [\dfrac{1}{2}\, , \, 1\right ]</math>. </li>
   <li> <math>f(x) = f(x+n) \forall n \in \mathbb{N} </math>. </li>
   <li> <math>f(x) = f(x+n) \forall n \in \mathbb{N} </math>. </li>
Línea 23: Línea 27:
   <li> <math> \int_0^1 f(x) \, dx \,\>\, 0</math></li>
   <li> <math> \int_0^1 f(x) \, dx \,\>\, 0</math></li>
   <li> <math> \forall n \in \mathbb{N}, \, \int_0^1 f(x) \, dx = \int_n^{n+1} f(x) \, dx </math></li>
   <li> <math> \forall n \in \mathbb{N}, \, \int_0^1 f(x) \, dx = \int_n^{n+1} f(x) \, dx </math></li>
   <li> <math> \int_0^{+\infty } f(x) \, dx \, = + \infty </math>
   <li> <math> \int_0^{+\infty } f(x) \, dx \, = + \infty </math> </li>
</ol>


== Ejercicio 3 ==
== Ejercicio 3 ==

Revisión actual - 03:23 30 jul 2017

Plantilla:Back

Ejercicio 1

Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f: \mathbb{R}^2 \rightarrow \mathbb{R}} , Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f \in C^1} tal que:

  1. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(1,2)\, < \, 0 }
  2. Existe una sucesión Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \{Pk\}_{k \in \mathbb{N}} } tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle lim \, f(Pk)=+\infty} cuando Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle n \rightarrow + \infty } .

Probar que:

  1. Existe Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle p \in \mathbb{R}^2} tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(p)=0} .
  2. Si existen dos puntos Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle p\neq q \in \mathbb{R}^2} tales que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(p)=f(q)=0} , entonces existe un punto Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle p_0 \in \mathbb{R}^2} tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \nabla f (p_0)} es perpendicular al vector que une Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle q} con Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle p} .

Ejercicio 2

Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f:[0,+\infty )\rightarrow \mathbb{R}} una función continua, que cumple las siguentes propiedades:

  1. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) \geq 0} para todo Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x\in [0,+\infty )}
  2. Existe un Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a \> 0 } tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) \geq a } Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall x \in \left [\dfrac{1}{2}\, , \, 1\right ]} .
  3. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) = f(x+n) \forall n \in \mathbb{N} } .

Demostrar que cumple estas otras propiedades:

  1. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \int_0^1 f(x) \, dx \,\>\, 0}
  2. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall n \in \mathbb{N}, \, \int_0^1 f(x) \, dx = \int_n^{n+1} f(x) \, dx }
  3. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \int_0^{+\infty } f(x) \, dx \, = + \infty }

Ejercicio 3

Demostrar que si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f:\mathbb{R}^2 \rightarrow \mathbb{R}} es diferenciable en Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P} , entonces, dado Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v \in \mathbb{R}^2} de norma 1, existe la derivada direccional Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{\delta f}{\delta v}} y vale Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \nabla f(P) \cdot v} .

Ejercicio 4

Demostrar Multiplicadores de Lagrange para Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}^2} o Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}^3} (a elección).