Diferencia entre revisiones de «Parcial de Lógica Verano 2017 (LyC)»
Sin resumen de edición |
(Ahora sí, la ecuación quedó bien posta.) |
||
(No se muestran 3 ediciones intermedias de 2 usuarios) | |||
Línea 8: | Línea 8: | ||
'''a.''' <math>\Gamma_1 \subseteq \mathbf{Con}(\Gamma_1 \cap \Gamma_2)</math>. | '''a.''' <math>\Gamma_1 \subseteq \mathbf{Con}(\Gamma_1 \cap \Gamma_2)</math>. | ||
'''b.''' <math>\mathbf{Con}(\Gamma_1 \cup \{\alpha \rightarrow \beta \mid \alpha \in \Gamma_1, \beta \in \Gamma_2\}) = \mathbf{Con}(\Gamma_1 \cup \Gamma_2)</math>. | '''b.''' <math>\mathbf{Con}(\Gamma_1 \cup \{\alpha \rightarrow \beta \mid \alpha \in \Gamma_1, \beta \in \Gamma_2\}) = \mathbf{Con}(\Gamma_1 \cup \Gamma_2)</math>. ''En el medio del parcial, aclararon que para este ejercicio''<math>\Gamma_1 \neq \emptyset</math>. | ||
'''c.''' Si <math>\mathbf{Con}(\Gamma_1) \subseteq \mathbf{Con}(\Gamma_2)</math> entonces <math>\Gamma_1 \subseteq \Gamma_2</math>. | '''c.''' Si <math>\mathbf{Con}(\Gamma_1) \subseteq \mathbf{Con}(\Gamma_2)</math> entonces <math>\Gamma_1 \subseteq \Gamma_2</math>. | ||
Línea 29: | Línea 29: | ||
'''a.''' Sea <math>\Gamma</math> un conjunto de axiomas correcto y completo respecto a <math>\mathcal{C}_1</math>. Si <math>\mathcal{C}_2 \neq \mathcal{C}_1</math>, entonces <math>\Gamma</math> no es completa respecto a <math>\mathcal{C}_2</math>. | '''a.''' Sea <math>\Gamma</math> un conjunto de axiomas correcto y completo respecto a <math>\mathcal{C}_1</math>. Si <math>\mathcal{C}_2 \neq \mathcal{C}_1</math>, entonces <math>\Gamma</math> no es completa respecto a <math>\mathcal{C}_2</math>. | ||
'''b.''' Sean <math>\Gamma_1 = \lbrace \varphi \mid \mathcal{C}_1 \models \varphi \rbrace</math> y <math>\Gamma_2 = \lbrace \varphi \mid \mathcal{C}_2 \models \varphi \rbrace</math>. Si <math>\mathcal{C}_1 \subseteq \mathcal{C}_2</math> entonces <math>\Gamma_1 \ | '''b.''' Sean <math>\Gamma_1 = \lbrace \varphi \mid \mathcal{C}_1 \models \varphi \rbrace</math> y <math>\Gamma_2 = \lbrace \varphi \mid \mathcal{C}_2 \models \varphi \rbrace</math>. Si <math>\mathcal{C}_1 \subseteq \mathcal{C}_2</math> entonces <math>\Gamma_1 \supseteq \Gamma_2</math>. | ||
''Nota:'' Decimos que <math>\mathcal{C} \models \varphi</math> sii para toda <math>\mathcal{L}</math>-estructura <math>\mathcal{A} \in \mathcal{C}</math> | ''Nota:'' Decimos que <math>\mathcal{C} \models \varphi</math> sii para toda <math>\mathcal{L}</math>-estructura <math>\mathcal{A} \in \mathcal{C}</math> | ||
sucede que <math>\mathcal{A} \models \varphi</math>. | sucede que <math>\mathcal{A} \models \varphi</math>. |
Revisión actual - 01:55 25 nov 2017
El examen es a libro abierto y se puede suponer demostrado lo dado en las clases y los ejercicios de las guías colocando referencias claras. Entregar cada ejercicio en hojas separadas. En cada hoja debe figurar nombre y apellido.
Ejercicio 1
Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_1, \Gamma_2 \subseteq \mathbf{Form}} dos conjuntos de fórmulas de la lógica proposicional. Decidir en cada caso si la afirmación es verdadera o falsa y justificar apropiadamente (i.e., demostrar o dar un contraejemplo).
a. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_1 \subseteq \mathbf{Con}(\Gamma_1 \cap \Gamma_2)} .
b. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbf{Con}(\Gamma_1 \cup \{\alpha \rightarrow \beta \mid \alpha \in \Gamma_1, \beta \in \Gamma_2\}) = \mathbf{Con}(\Gamma_1 \cup \Gamma_2)} . En el medio del parcial, aclararon que para este ejercicioError al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_1 \neq \emptyset} .
c. Si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbf{Con}(\Gamma_1) \subseteq \mathbf{Con}(\Gamma_2)} entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_1 \subseteq \Gamma_2} .
d. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbf{Con}(\{ \alpha \wedge \beta \mid \alpha \in \Gamma_1, \beta \in \Gamma_2\}) \subseteq \mathbf{Con}(\Gamma_1)} .
Ejercicio 2
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma \subseteq \mathbf{Form}} un conjunto de fórmulas de la lógica proposicional. Demostrar que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbf{Con}(\Gamma)} es maximal consistente si y solo si existe una única valuación Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v} tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v \vDash \Gamma} .
Ejercicio 3
Una función Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f} se dice casi sobreyectiva si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \{y \mid (\forall x) f(x) \neq y\}} es finito y no vacío. Demostrar que, dado un lenguaje de primer orden con igualdad y un símbolo de función unario, no es expresable la propiedad “Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f} es una función casi sobreyectiva”.
Ejercicio 4
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{L}} un lenguaje de primer orden y sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C}_1} y Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C}_2} dos clases de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{L}} -estructuras. Decidir en cada caso si la afirmación es verdadera o falsa y justificar apropiadamente (i.e., demostrar o dar un contraejemplo).
a. Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma} un conjunto de axiomas correcto y completo respecto a Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C}_1} . Si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C}_2 \neq \mathcal{C}_1} , entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma} no es completa respecto a Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C}_2} .
b. Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_1 = \lbrace \varphi \mid \mathcal{C}_1 \models \varphi \rbrace} y Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_2 = \lbrace \varphi \mid \mathcal{C}_2 \models \varphi \rbrace} . Si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C}_1 \subseteq \mathcal{C}_2} entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma_1 \supseteq \Gamma_2} .
Nota: Decimos que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{C} \models \varphi} sii para toda Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{L}} -estructura Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{A} \in \mathcal{C}} sucede que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{A} \models \varphi} .