Diferencia entre revisiones de «Práctica 1: Inducción (Algoritmos III)»
Línea 34: | Línea 34: | ||
<br>d) | <br>d) | ||
P(n) = Σ{i=1..n} (-1)^i*i^2 = (-1)^n*n(n+1)/2 | |||
* CB: n = 1 | |||
Σ{i=1..1} (-1)^i*i^2 = -1 | |||
(-1)^1*1(1+1)/2 = -1 OK | |||
* PI: P(n)=>P(n+1) | |||
Σ{i=1..n+1} (-1)^i*i^2 = Σ{i=1..n} (-1)^i*i^2 + (-1)^(n+1)*(n+1)^2 = (HI) (-1)^n*n(n+1)/2 + (-1)^(n+1)*(n+1)^2 = [ (-1)^n*n(n+1) + 2(-1)^(n+1)*(n+1)^2 ]/2 = (-1)^(n+1) [ -n(n+1) + 2*(n+1)^2 ]/2 = (-1)^(n+1)*(n+1) [ 2*(n+1)-n ]/2 = (-1)^(n+1)*(n+1) [ 2n-2-n ]/2 = (-1)^(n+1)*(n+1)(n+2)/2 OK | |||
<br>e) | <br>e) |
Revisión del 21:49 11 nov 2006
Ejercicio 01.01:
a)
P(n) = Σ{i=1..n} i = n(n+1)/2
- CB: n = 1
Σ{i=1..1} i = 1
1(1+1)/2 = 1 OK
- PI: P(n)=>P(n+1)
Σ{i=1..n+1} i = Σ{i=1..n} i + n+1 = (HI) n(n+1)/2 + 2(n+1)/2 = (n+2)(n+1)/2 OK
b)
P(n) = Σ{i=0..n} (2*i+1) = (n+1)^2
- CB: n = 0
Σ{i=0..0} (2*i+1) = 1
(0+1)^2 = 1 OK
- PI: P(n)=>P(n+1)
Σ{i=0..n+1} (2*i+1) = Σ{i=0..n} 2*i+1 + 2*(n+1)+1 = (HI) (n+1)^2 + 2n + 3 = n^2 + 2*n + 1 + 2n + 3 = n^2 + 4*n + 4 = (n+2)^2 OK
c)
P(n) = Σ{i=1..n} i^2 = n(n+1)(2n+1)/6
- CB: n = 1
Σ{i=1..1} i^2 = 1
1(1+1)(2*1+1)/6 = 1 OK
- PI: P(n)=>P(n+1)
Σ{i=1..n+1} i^2 = Σ{i=1..n} i^2 + (n+1)^2 = (HI) n(n+1)(2n+1)/6 + (n+1)^2 = [ n(n+1)(2n+1)/6 + 6*(n+1)^2 ]/6 = (n+1)[ n(2n+1)/6 + 6*(n+1) ]/6 = (n+1)[ 2*n^2 + n + 6*n + 6 ]/6 = (n+1)(n+2)(2n+3)/6 OK
d)
P(n) = Σ{i=1..n} (-1)^i*i^2 = (-1)^n*n(n+1)/2
- CB: n = 1
Σ{i=1..1} (-1)^i*i^2 = -1
(-1)^1*1(1+1)/2 = -1 OK
- PI: P(n)=>P(n+1)
Σ{i=1..n+1} (-1)^i*i^2 = Σ{i=1..n} (-1)^i*i^2 + (-1)^(n+1)*(n+1)^2 = (HI) (-1)^n*n(n+1)/2 + (-1)^(n+1)*(n+1)^2 = [ (-1)^n*n(n+1) + 2(-1)^(n+1)*(n+1)^2 ]/2 = (-1)^(n+1) [ -n(n+1) + 2*(n+1)^2 ]/2 = (-1)^(n+1)*(n+1) [ 2*(n+1)-n ]/2 = (-1)^(n+1)*(n+1) [ 2n-2-n ]/2 = (-1)^(n+1)*(n+1)(n+2)/2 OK
e)
P(n) = ( Σ{i=1..n} i )^2 = Σ{i=1..n} i^3
- CB: n = 1
( Σ{i=1..1} i )^2 = 1
Σ{i=1..1} i^3 = 1 OK
- PI: P(n)=>P(n+1)
( Σ{i=1..n+1} i )^2 = ( Σ{i=1..n} i + n+1 )^2 = ( Σ{i=1..n} i )^2 + 2*( Σ{i=1..n} i )*(n+1) + (n+1)^2 = (HI) = Σ{i=1..n} i^3 + 2*n(n+1)/2 + (n+1)^2 = Σ{i=1..n} i^3 + (n+1)(n+1)^2 = Σ{i=1..n} i^3 + (n+1)^3 = Σ{i=1..n+1} i^3 OK
f)
P(n) = Σ{i=1..n} i*i! = (n+1)!-1
- CB: n = 1
Σ{i=1..1} i*i! = 1
(1+1)!-1 = 1 OK
- PI: P(n)=>P(n+1)
Σ{i=1..n+1} i*i! = Σ{i=1..n} i*i! + (n+1)(n+1)! = (HI) (n+1)!-1 + (n+1)(n+1)! = (n+1)!(n+1-1)-1 = (n+1)!*n-1 = (n+2)!-1 OK
Ejercicio 01.02:
HI = Σi=0..n 2i = 2n+1-1
- CB: n = 0
Σi=0..0 2i = 1
20+1-1 = 2-1 = 1 OK
- PI: P(n)=>P(n+1)
Σi=0..n+1 2i = Σi=0..n 2i + 2n+1 = (HI) 2n+1-1 + 2n+1 = 2 * 2n+1-1 = 2n+2-1 OK