Diferencia entre revisiones de «Práctica 2 (Paradigmas)»
Sin resumen de edición |
Sin resumen de edición |
||
Línea 55: | Línea 55: | ||
/ | / | ||
x | x | ||
== Ejercicio 3 == | |||
a) Marcar las ocurrencias del término x como subtérmino en λx: Nat. succ((λx: Nat. x) x). | |||
b) Ocurre x1 como subtérmino en λx1 : Nat. succ(x2)? | |||
c) Ocurre x (y z) como subtérmino en u x (y z)? |
Revisión del 16:50 6 oct 2021
Ejercicio 1
Determinar qué expresiones son sintácticamente válidas (es decir, pueden ser generadas con las gramáticas presentadas) y determinar a qué categoría pertenecen (expresiones de términos o expresiones de tipos):
a) x ---------VALIDO, expresiones de términos
b) x x ---------VALIDO, expresiones de términos
c) M --------- No es un término
d) M M --------- No es un término
e) true false ---------VALIDO, expresiones de términos
f) true succ(false true) ---------VALIDO, expresiones de términos
g) λx.isZero(x) --------- Falta tipo
h) λx: σ. succ(x) --------- Falta tipo, sigma no es un tipo valido
i) λx: Bool. succ(x) ---------VALIDO, expresiones de términos
j) λx: if true then Bool else Nat. x --------- Falta tipo
k) σ --------- Sigma no es un tipo valido
l) Bool ---------VALIDO, expresiones de tipos
m) Bool → Bool ---------VALIDO, expresiones de tipos
n) Bool → Bool → Nat ---------VALIDO, expresiones de tipos
ñ) (Bool → Bool) → Nat ---------VALIDO, expresiones de tipos
o) succ true --------- Si succ fuera una variables seria una aplicación, pero el enunciado dice que las variables se representan con una letra por lo cual a succ como termino le faltan los paréntesis.
p) λx: Bool. if 0 then true else 0 succ(true) ---------VALIDO, expresiones de términos
Ejercicio 2
Mostrar un término que utilice al menos una vez todas las reglas de generación de la gramática y exhibir su árbol sintáctico.
(λx: Bool. if isZero(succ(pred(x))) then true else false) x app / \ (λx: Bool. if isZero(succ(pred(x))) then true else false) x abs / if isZero(succ(pred(x))) then true else false ITF / | \ isZero(succ(pred(x)) true false / succ(pred(x)) / pred(x) / x
Ejercicio 3
a) Marcar las ocurrencias del término x como subtérmino en λx: Nat. succ((λx: Nat. x) x).
b) Ocurre x1 como subtérmino en λx1 : Nat. succ(x2)?
c) Ocurre x (y z) como subtérmino en u x (y z)?