Diferencia entre revisiones de «Práctica 7 (LyC Verano)»

De Cuba-Wiki
Línea 12: Línea 12:


==Ejercicio 05==
==Ejercicio 05==
Si definimos la funcion la suma como f(x,y) = x + y + 1;
Si definimos la funcion la suma como f(x,y) = x + y + 1. <br>
Esto cumple los axiomas dados, pero sin embargo es evidente que no cumple con la suma en los naturales.
Esto cumple los axiomas dados, pero sin embargo es evidente que no cumple con la suma en los naturales.



Revisión del 15:46 9 mar 2007

Ejercicio 01

Ejercicio 02

Ejercicio 03

a)

b)

c)

Ejercicio 04

a)

b)

c)

Ejercicio 05

Si definimos la funcion la suma como f(x,y) = x + y + 1.
Esto cumple los axiomas dados, pero sin embargo es evidente que no cumple con la suma en los naturales.

Ejercicio 06

a)

Si tomamos φi = "El modelo tiene al menos i elementos", un posible conjunto es Γ={φ1,φ2,φ3,..}

b)

Sup. que es posible. Si tomamos Γ={φ1,φ2,φ3,..}, por compacidad, existe un subconjunto finito satisfacible. Sea φ' = "El dominio es finito". Entonces si tomamos por ej. {φ1,φ2}U{φ'}, es satisfacible ya que hay modelos que lo hacen valido. Pero si tomamos ΓU{φ'}, estamos diciendo que el dominio es finito, pero al ser Γ infinito, es satisfacible si tiene infinitos elementos. Por lo tanto llegamos a un ABS

Ejercicio 07

Ejercicio 08

Ejercicio 09

a)

b)

c)

Ejercicio 10

a)










...

Con lo cual la rama queda saturada, por lo que la negacion es satisfacible

b)









×

Ejercicio 11

Ejercicio 12

a)

Si








b)

Si

Ejercicio 13


Antes podemos reescribir la formula de la siguiente forma: P٨Q→Z <=> ¬(P٨Q)٧Z <=> ¬P٧¬Q٧Z . Con lo cual la negacion queda P٨Q٨¬Z. Entonces:



(4)(Usando 2)
(5)(Usando 3)
(6)(Usando 5)
(7)(Usando 4)
(8)(Usando 7)
(9)(Usando 5)
(10)(Usando 1)
(11)
(12)(Usando 8,9)
(13)