Diferencia entre revisiones de «Final 07/03/2014 (Análisis II)»
Sin resumen de edición |
m (→Ejercicio 2) |
||
Línea 24: | Línea 24: | ||
<li> <math> \forall n \in \mathbb{N}, \, \int_0^1 f(x) \, dx = \int_n^{n+1} f(x) \, dx </math></li> | <li> <math> \forall n \in \mathbb{N}, \, \int_0^1 f(x) \, dx = \int_n^{n+1} f(x) \, dx </math></li> | ||
<li> <math> \int_0^{+\infty } f(x) \, dx \, = + \infty </math> | <li> <math> \int_0^{+\infty } f(x) \, dx \, = + \infty </math> | ||
</ol> | |||
== Ejercicio 3 == | == Ejercicio 3 == |
Revisión del 01:17 8 mar 2014
Plantilla:Back (Creo que era así. perdón la notación pero no se usar esto) Sea f: R2 --- R C1 tal que a. f(1,2)<0 b. Sea Pk con k perteneciente a los naturales tal que lim f(Pk)=infinito cuando n tiende a infinito
probar que: a. existe p perteneciente a R2 tal que f(p)=0 b. Si f(p)=f(q)=0 para q diferente de p entonces el grad de f en un punto po (intermedio entre el vector que une q con p) es perpendicular al vector que une q con p
Ejercicio 2
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f:\[0,+\infty )\rightarrow \mathbb{R}} una función continua, que cumple las siguentes propiedades:
- Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) \geq 0} para todo Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x\in \[0,+\infty )}
- Existe un Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a \> 0 } tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) \geq a } Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall x \in \left [\dfrac{1}{2}\, , \, 1\right ]} .
- Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x) = f(x+n) \forall n \in \mathbb{N} } .
Demostrar que cumple estas otras propiedades:
- Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \int_0^1 f(x) \, dx \,\>\, 0}
- Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall n \in \mathbb{N}, \, \int_0^1 f(x) \, dx = \int_n^{n+1} f(x) \, dx }
- Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \int_0^{+\infty } f(x) \, dx \, = + \infty }
Ejercicio 3
Demostrar que si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f:\mathbb{R}^2 \rightarrow \mathbb{R}} es diferenciable en Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P} , entonces, dado Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v \in \mathbb{R}^2} de norma 1, existe la derivada direccional Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{\delta f}{\delta v}} y vale Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \nabla f(P) \cdot v} .
Ejercicio 4
Demostrar Multiplicadores de Lagrange para Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}^2} o Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathbb{R}^3} (a elección).