Diferencia entre revisiones de «Práctica 5 (Métodos Numéricos)»

De Cuba-Wiki
(Actualizo)
(No se muestran 7 ediciones intermedias del mismo usuario)
Línea 1: Línea 1:
{{Back|Métodos Numéricos}}
==Ejercicio 1==
==Ejercicio 1==
'''¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?'''<BR>
'''¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?'''<BR>
<math> S = \{ x + y - z = 0 \}</math>. El vector normal al plano es (1, 1, -1).<BR>
<math> S = \{ x + y - z = 0 \}</math>. El vector normal al plano es (1, 1, -1).<BR>
Entonces buscamos un <math>(2, 1, 0) + \lambda (1, 1, -1)</math> que pertenezca a S.
Entonces buscamos un <math>t= (2, 1, 0) + \lambda (1, 1, -1) = (2 + \lambda, 1 + \lambda, -\lambda) </math> que pertenezca a S. Como (1, 1, -1) es la normal del plano se debe cumplir que el producto interno entre éste y t sea 0.
<math> (2, 1, 0) +\lambda (1, 1, -1) = (2 + \lambda, 1 + \lambda, -\lambda) </math> esta en <math>S \Longleftrightarrow 2 + \lambda + 1 + \lambda - (-\lambda) = 0 \Longleftrightarrow 3 + 3 \lambda = 0 \Longleftrightarrow \lambda = -1 \Longrightarrow </math> El punto mas cercano es <math>(2, 1, 0) + -1 (1, 1, -1) = (1, 0, 1)</math>
Entonces t está en S <math>\Longleftrightarrow 2 + \lambda + 1 + \lambda - (-\lambda) = 0 </math>
 
<math>\Longleftrightarrow 3 + 3 \lambda = 0</math>
 
<math>\Longleftrightarrow \lambda = -1</math>.
 
Entonces el punto más cercano es <math>t = (2, 1, 0) + (-1) (1, 1, -1) = (1, 0, 1)</math>


==Ejercicio 2==
==Ejercicio 2==
'''Sean <math>a, b \in \mathbb{R}^n</math> fijos. ¿Qué número real t hace que <math>\lVert a-t*b\rVert_2</math> sea mínimo'''<br>
'''Sean <math>a, b \in \mathbb{R}^n</math> fijos. ¿Qué número real t hace que <math>|| a-t*b\||_2</math> sea mínimo'''<br>
Minimizar <math>\lVert a-t*b\rVert</math> es lo mismo que minimizar <math>\lVert a-t*b\rVert^2</math> pues la raiz es monotona y creciente. Llamemos a esta funcion <math>f(t)</math> y minimizemosla: <br>
Minimizar <math>|| a-t*b||</math> es lo mismo que minimizar <math>|| a-t*b||^2</math> pues la raíz es monótona y creciente. Llamemos a esta funcion <math>f(t)</math> y minimizemosla: <br>
<math>f(t) = ||a - t * b|| ^ 2 = \sum_{i = 0}^{n} (a_i - t b_i)^2 </math><br>
<math>f(t) = ||a - t * b|| ^ 2 = \sum_{i = 0}^{n} (a_i - t b_i)^2 </math><br>
Para hallar el minimo de esta funcion, la derivamos y buscamos donde es igual a 0.
Para hallar el minimo de esta funcion, la derivamos y buscamos donde es igual a 0.
Línea 18: Línea 26:
<math> \Longleftrightarrow \frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2} =  t </math><br>
<math> \Longleftrightarrow \frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2} =  t </math><br>


Para poder afirmar que es minimo, en realidad falta calcular <math>f''(\frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2})</math> y ver que es mayor a 0, pero 0 ganas...
Para poder afirmar que es mínimo, en realidad falta calcular <math>f''(\frac{\sum_{i = 0}^{n} b_i a_i}{\sum_{i = 0}^{n} b_i^2})</math> y ver que es mayor a 0, pero 0 ganas...


==Ejercicio 3==
==Ejercicio 3==
La función <math> f(x) = f(x_1, x_2, ..., x_n) = \| A x - b \| </math>es una función diferenciable de n variables, que tiene un mínimo (absoluto) sólo si <math>\nabla f = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m})^t = 0</math>. Calcular <math>\nabla f</math> y demostrar que <math>\nabla f(x) = 0 \Longleftrightarrow si \ A^tAx = A^tb</math> (ecuaciones normales).<BR>
NOTA: Por favor, si alguien sabe hacer este ejercicio, subalo...
==Ejercicio 4==
'''Sea <math>A \in \mathbb{R}^{nxm}</math>. Se define el espacio columna de A como el subespacio de <math>\mathbb{R}^n</math> generado por las columnas de A y el espacio fila de A como el subespacio de <math>\mathbb{R}^n</math> generado por las filas de A.'''
'''Sea <math>A \in \mathbb{R}^{nxm}</math>. Se define el espacio columna de A como el subespacio de <math>\mathbb{R}^n</math> generado por las columnas de A y el espacio fila de A como el subespacio de <math>\mathbb{R}^n</math> generado por las filas de A.'''
====Ejercicio 4. a====
====Ejercicio 3. a====
'''Probar que el espacio columna de A es <math>Im(A)</math>.'''<BR>
'''Probar que el espacio columna de A es <math>Im(A)</math>.'''<BR>
<math>v \in Im(A) \Longleftrightarrow \exists w / Aw = x</math>.
<math>v \in Im(A) \Longleftrightarrow \exists w / Aw = x</math>.
Línea 33: Línea 37:
<math>\Longleftrightarrow x \in espacio \ columnas \ de \ A</math>.
<math>\Longleftrightarrow x \in espacio \ columnas \ de \ A</math>.


====Ejercicio 4. d====
====Ejercicio 3. d====
'''Probar que el espacio fila de A es <math>Nu(A)^{\bot}</math>.'''<BR>
'''Probar que el espacio fila de A es <math>Nu(A)^{\bot}</math>.'''<BR>
La idea es que alguien pertenece a <math>Nu(a)</math> solamente si dicho vector da 0 contra todas las filas de <math>A</math>. Por lo tanto es ortogonal a una base del espacio filas de <math>A</math>, por lo que pertenece a <math>Nu(A)^{\bot}</math>. La vuelta es si pertenece a <math>Nu(A)^{\bot}</math>, entonces va a dar 0 contra todas las filas de A.
La idea es que alguien pertenece a <math>Nu(a)</math> solamente si dicho vector da 0 contra todas las filas de <math>A</math>. Por lo tanto es ortogonal a una base del espacio filas de <math>A</math>, por lo que pertenece a <math>Nu(A)^{\bot}</math>. La vuelta es si pertenece a <math>Nu(A)^{\bot}</math>, entonces va a dar 0 contra todas las filas de A.
====Ejercicio 4. c====
====Ejercicio 3. c====
'''Probar que <math>Im(A)^{\bot} = Nu(A^t)</math>.'''<BR>
'''Probar que <math>Im(A)^{\bot} = Nu(A^t)</math>.'''<BR>
<math>Im(A)</math> es el espacio columna de A. Que es el espacio fila de <math>A^t</math>. Y el espacio fila de una matriz es ortogonal a su nucleo por lo que probamos antes<math>\Box</math>.
<math>Im(A)</math> es el espacio columna de A. Que es el espacio fila de <math>A^t</math>. Y el espacio fila de una matriz es ortogonal a su nucleo por lo que probamos antes<math>\Box</math>.


==Ejercicio 5==
==Ejercicio 4==
'''Sean u y v vectores ortogonales en <math>\mathbb{R}</math> entonces <math> \| u + v \|_2^2  = \| u \|_2^2 + \| u \|_2^2 </math> (Teorema de Pitágoras).'''<BR>
'''Sean u y v vectores ortogonales en <math>\mathbb{R}</math> entonces <math> \| u + v \|_2^2  = \| u \|_2^2 + \| u \|_2^2 </math> (Teorema de Pitágoras).'''<BR>
<math> \| u + v \| _2^2 = (u + v) \times (u + v)</math><BR>
<math> \| u + v \| _2^2 = (u + v) \times (u + v)</math><BR>
Línea 47: Línea 51:
Como u y v son ortogonales, entonces <math>(v \times u) = 0</math> y luego: <math> \| u + v \| _2^2 = (u \times u) +  (v \times v) = \| u \| _2 + \| u \| _2</math><BR>
Como u y v son ortogonales, entonces <math>(v \times u) = 0</math> y luego: <math> \| u + v \| _2^2 = (u \times u) +  (v \times v) = \| u \| _2 + \| u \| _2</math><BR>


==Ejercicio 6==
==Ejercicio 5==
'''Demostrar que si P es una proyección ortogonal sobre el subespacio <math>S \in \mathbb{R}^n</math>, entonces para todo <math> x \in \mathbb{R}^n, (I - P)x \in S^{\bot}</math>.'''<BR>
'''Demostrar que si P es una proyección ortogonal sobre el subespacio <math>S \in \mathbb{R}^n</math>, entonces para todo <math> x \in \mathbb{R}^n, (I - P)x \in S^{\bot}</math>.'''<BR>
NOTA: Si alguien me dice que es una proyección ortogonal (la definicion de una), intento hacerlo...
NOTA: Si alguien me dice que es una proyección ortogonal (la definicion de una), intento hacerlo...
Línea 58: Línea 62:


http://planetmath.org/encyclopedia/Projection.html
http://planetmath.org/encyclopedia/Projection.html
== Ejercicio 9 ==
'''Supongamos que Ax = y. Probar que un vector <math>\hat x \in \mathbb{R}^m</math> satisface <math>A\hat x = y</math> si y sólo si <math>x - \hat x \in Nu(A)</math>.Demostar que el problema de cuadrados mínimos tiene solución única si y sólo si Nu(A) = {0}.'''
Ida) Sea Ax = b con solución unica. Supongamos que <math>Nu(A) \neq \lbrace 0 \rbrace</math>. Sea <math>z \neq 0, z \in Nu(A)</math>, entonces <math>Az = 0 \Leftrightarrow Ax + Az = b \Leftrightarrow A(x+z) = b \Leftrightarrow x+z \neq x</math> es otra solución del sistema. '''Absurdo!'''
Vuelta) Sea Nu(a) = {0}. Supongamos que existen y e x, <math>y \neq x</math>, soluciones del sistema Ax=b. Entonces <math>Ay - Az = b - b = 0 \Leftrightarrow A(y-z) = 0</math>. Pero<math> y-z \neq 0</math> y Nu(a) = {0}. '''Absurdo!'''
==Ejercicio viejo==
La función <math> f(x) = f(x_1, x_2, ..., x_n) = \| A x - b \| </math>es una función diferenciable de n variables, que tiene un mínimo (absoluto) sólo si <math>\nabla f = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m})^t = 0</math>. Calcular <math>\nabla f</math> y demostrar que <math>\nabla f(x) = 0 \Longleftrightarrow si \ A^tAx = A^tb</math> (ecuaciones normales).<BR>
NOTA: Por favor, si alguien sabe hacer este ejercicio, subalo...
[[Category:Prácticas]]

Revisión del 05:15 25 jun 2015

Plantilla:Back

Ejercicio 1

¿Cuál es el punto del plano x + y − z = 0 más cercano al punto (2, 1, 0)?
. El vector normal al plano es (1, 1, -1).
Entonces buscamos un que pertenezca a S. Como (1, 1, -1) es la normal del plano se debe cumplir que el producto interno entre éste y t sea 0. Entonces t está en S

.

Entonces el punto más cercano es

Ejercicio 2

Sean fijos. ¿Qué número real t hace que sea mínimo
Minimizar es lo mismo que minimizar pues la raíz es monótona y creciente. Llamemos a esta funcion y minimizemosla:

Para hallar el minimo de esta funcion, la derivamos y buscamos donde es igual a 0.






Para poder afirmar que es mínimo, en realidad falta calcular y ver que es mayor a 0, pero 0 ganas...

Ejercicio 3

Sea . Se define el espacio columna de A como el subespacio de generado por las columnas de A y el espacio fila de A como el subespacio de generado por las filas de A.

Ejercicio 3. a

Probar que el espacio columna de A es .
. . . .

Ejercicio 3. d

Probar que el espacio fila de A es .
La idea es que alguien pertenece a solamente si dicho vector da 0 contra todas las filas de . Por lo tanto es ortogonal a una base del espacio filas de , por lo que pertenece a . La vuelta es si pertenece a , entonces va a dar 0 contra todas las filas de A.

Ejercicio 3. c

Probar que .
es el espacio columna de A. Que es el espacio fila de . Y el espacio fila de una matriz es ortogonal a su nucleo por lo que probamos antes.

Ejercicio 4

Sean u y v vectores ortogonales en entonces (Teorema de Pitágoras).


.
Como u y v son ortogonales, entonces y luego:

Ejercicio 5

Demostrar que si P es una proyección ortogonal sobre el subespacio , entonces para todo .
NOTA: Si alguien me dice que es una proyección ortogonal (la definicion de una), intento hacerlo...

Ver

http://mathworld.wolfram.com/ProjectionMatrix.html

o

http://planetmath.org/encyclopedia/Projection.html

Ejercicio 9

Supongamos que Ax = y. Probar que un vector satisface si y sólo si .Demostar que el problema de cuadrados mínimos tiene solución única si y sólo si Nu(A) = {0}.

Ida) Sea Ax = b con solución unica. Supongamos que . Sea , entonces es otra solución del sistema. Absurdo!

Vuelta) Sea Nu(a) = {0}. Supongamos que existen y e x, , soluciones del sistema Ax=b. Entonces . Pero y Nu(a) = {0}. Absurdo!

Ejercicio viejo

La función es una función diferenciable de n variables, que tiene un mínimo (absoluto) sólo si . Calcular y demostrar que (ecuaciones normales).
NOTA: Por favor, si alguien sabe hacer este ejercicio, subalo...