Diferencia entre revisiones de «Parcial de Lógica Verano 2017 (LyC)»

De Cuba-Wiki
(Página creada con «== Ejercicio 1 == Sean <math>\Gamma_1, \Gamma_2 \subseteq \mathbf{Form}</math> dos conjuntos de fórmulas de la lógica proposicional. Decidir en cada caso si la afirmaci...»)
 
Sin resumen de edición
Línea 1: Línea 1:
El examen es a libro abierto y se puede suponer demostrado lo dado en las clases y los ejercicios de las guías colocando referencias claras. Entregar cada ejercicio en hojas separadas. En cada hoja debe figurar nombre y apellido.
== Ejercicio 1 ==
== Ejercicio 1 ==



Revisión del 03:56 23 mar 2017

El examen es a libro abierto y se puede suponer demostrado lo dado en las clases y los ejercicios de las guías colocando referencias claras. Entregar cada ejercicio en hojas separadas. En cada hoja debe figurar nombre y apellido.

Ejercicio 1

Sean dos conjuntos de fórmulas de la lógica proposicional. Decidir en cada caso si la afirmación es verdadera o falsa y justificar apropiadamente (i.e., demostrar o dar un contraejemplo).

a. .

b. .

c. Si entonces .

d. .

Ejercicio 2

Sea un conjunto de fórmulas de la lógica proposicional. Demostrar que es maximal consistente si y solo si existe una única valuación tal que .

Ejercicio 3

Una función se dice casi sobreyectiva si es finito y no vacío. Demostrar que, dado un lenguaje de primer orden con igualdad y un símbolo de función unario, no es expresable la propiedad “ es una función casi sobreyectiva”.

Ejercicio 4

Sea un lenguaje de primer orden y sean y dos clases de -estructuras. Decidir en cada caso si la afirmación es verdadera o falsa y justificar apropiadamente (i.e., demostrar o dar un contraejemplo).

a. Sea un conjunto de axiomas correcto y completo respecto a . Si , entonces no es completa respecto a .

b. Sean y . Si entonces .

Nota: Decimos que sii para toda -estructura sucede que .