Diferencia entre revisiones de «Final 03/08/2017 (Probabilidad y Estadística)»

De Cuba-Wiki
Sin resumen de edición
Sin resumen de edición
Línea 1: Línea 1:
1) Explicar en que consiste un proceso de Poisson y su relación con la distribución de Poisson
1) Explicar en que consiste un proceso de Poisson y su relación con la distribución de Poisson.


2) Construir un test de hipótesis de nivel aproximado para el parámetro p de una distribución binomial
2) Construir un test de hipótesis de nivel aproximado para el parámetro p de una distribución binomial.


3) Se repite <math>n</math> veces un experimento en forma independiente. Si <math>A</math> es un suceso y <math>n_a</math> la cantidad de veces que ocurre <math>A</math>. Dado <math>\epsilon > 0</math>, probar que <math>P(|\frac{n_a}{n} - a(A)| > \epsilon) \rightarrow 0</math> para <math>n \rightarrow \infty</math>.
3) Se repite <math>n</math> veces un experimento en forma independiente. Si <math>A</math> es un suceso y <math>n_a</math> la cantidad de veces que ocurre <math>A</math>. Dado <math>\epsilon > 0</math>, probar que <math>P(|\frac{n_a}{n} - a(A)| > \epsilon) \rightarrow 0</math> para <math>n \rightarrow \infty</math>.

Revisión del 02:53 7 ago 2017

1) Explicar en que consiste un proceso de Poisson y su relación con la distribución de Poisson.

2) Construir un test de hipótesis de nivel aproximado para el parámetro p de una distribución binomial.

3) Se repite veces un experimento en forma independiente. Si es un suceso y la cantidad de veces que ocurre . Dado , probar que para .

4) Sean variables aleatorias independientes. y sea . Dado , calcular .

5) Enunciar y probar el teorema de Bayes.

6) Sea una muestra aleatoria de una variable aleatoria tal que . Decidir si la varianza muestral es o no es un estimador consistente de .