Diferencia entre revisiones de «Final 14/06/2019 (Probabilidad y Estadística)»
Línea 16: | Línea 16: | ||
Posible resolución | Posible resolución | ||
<div class="mw-collapsible-content" style="overflow-x:scroll"> | <div class="mw-collapsible-content" style="overflow-x:scroll"> | ||
<math> P(X+Y = k)=P(X=k-Y) = | <math> P(X+Y = k)=P(X=k-Y) \overset{\overset{\text{Proba total}}{\downarrow}}{=} | ||
\sum\limits_{i=0}^k P(X=k-Y | Y=i)P(Y=i) | \sum\limits_{i=0}^k P(X=k-Y | Y=i)P(Y=i) = | ||
\sum\limits_{i=0}^k P(X=k-i | Y=i)P(Y=i) \overset{\overset{\perp\!\!\!\perp}{\downarrow}}{=} | \sum\limits_{i=0}^k P(X=k-i | Y=i)P(Y=i) \overset{\overset{\perp\!\!\!\perp}{\downarrow}}{=} | ||
\sum\limits_{i=0}^k P(X=k-i)P(Y=i) = | \sum\limits_{i=0}^k P(X=k-i)P(Y=i) = |
Revisión del 21:19 17 jun 2019
Criterio de aprobaci ́on: El examen consta de dos partes A y B. En la Parte A, cada ejercicio resuelto correctamentesuma un punto. En la Parte B, el ejercicio suma 5 puntos. El final se aprueba con 6 puntos y NO podra sumar mas de 5 puntos de cada parte
Parte A
Ejercicio 1
Se tiene una urna con cuatro pelotitas negras y tres rojas. Se quitan tres sin reposicion.
- Dar la probabilidad de que la primera halla sido negra y la tercera roja.
- Si se sabe que la tercera fue roja. Cual es la probabilidad de que la segunda halla sido negra?.
Ejercicio 2
Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X} , Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Y} dos variables aleatorias independientes con distribuciones Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X \sim \mathcal{P}(\lambda)} , Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Y \sim \mathcal{P}(\mu)} . Demostrar que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X+Y \sim \mathcal{P}(\lambda + \mu)}
Posible resolución
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P(X+Y = k)=P(X=k-Y) \overset{\overset{\text{Proba total}}{\downarrow}}{=} \sum\limits_{i=0}^k P(X=k-Y | Y=i)P(Y=i) = \sum\limits_{i=0}^k P(X=k-i | Y=i)P(Y=i) \overset{\overset{\perp\!\!\!\perp}{\downarrow}}{=} \sum\limits_{i=0}^k P(X=k-i)P(Y=i) = \sum\limits_{i=0}^k \left(\frac{\lambda^{k-i}}{(k-i)!} e^{-\lambda} \right) \left(\frac{\mu^{i}}{(i)!} e^{-\mu}\right) = e^{-(\lambda+\mu)}\sum\limits_{i=0}^k \frac{\lambda^{k-i}}{(k-i)!} \frac{\mu^{i}}{(i)!} = e^{-(\lambda+\mu)}\sum\limits_{i=0}^k \frac{\lambda^{k-i}}{(k-i)!} \frac{\mu^{i}}{(i)!} \frac{k!}{k!} = \frac{1}{k!} e^{-(\lambda+\mu)}\sum\limits_{i=0}^k \frac{k!}{(k-i)! i!} \lambda^{k-i}\mu^i = \frac{1}{k!} e^{-(\lambda+\mu)}\sum\limits_{i=0}^k \binom k i \lambda^{k-i}\mu^i = \frac{(\lambda+\mu)^k}{k!} e^{-(\lambda+\mu)} \sim \mathcal{P}(\lambda+\mu)}
Ejercicio 3
Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_1, \dots, X_n} , Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Y_1, \dots, Y_n} variables aleatorias independientes. Siendo Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_i} con distribucion geometrica de parametro Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle p} y Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Y_i} con distribucion normal de media 0 y varianza 1. Dar el valor limite de:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{1}{n}\sum\limits_{i=0}^n X_i\ \mathbb{I}_{\{Y_i>0\}}}
Posible resolución
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Z_i = X_i \mathbb{I}_{\{Y_i>0\}}} Yo se que si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{1}{n}\sum\limits_{i=0}^n} converge en probabilidad, lo hace a su esperanza por la Ley de Grandes Numeros:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{1}{n}\sum\limits_{i=0}^n \overset{p}{\longrightarrow} E[Z]}
Si se cumple que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle V[Z] < \infty} . Primero encuentro la esperanza y despues me preocupo por eso.
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle E[Z]=E[X\ \mathbb{I}_{\{Y>0\}}] \overset{\overset{\perp\!\!\!\perp}{\downarrow}}{=} E[X]E[\mathbb{I}_{\{Y>0\}}]=\frac{1}{p}E[\mathbb{I}_{\{Y>0\}}]=\frac{1}{p}P(Y>0)\overset{\overset{Y\sim\mathcal{N}(0,1)}{\downarrow}}{=}\frac{1}{2p}}
Para ver que la varianza es finita tengo que estudiar Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle E[Z^2]=E[X^2\ \cdot\ \left(\mathbb{I}_{\{Y>0\}}\right)^2]=E[X^2]\ E[\left(\mathbb{I}_{\{Y>0\}}\right)^2]} Yo se que la varianza de una geometrica es finita asi que el primer termino se puede calcular facil y es finito (Da Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (2-p)/p^2} ). Para el otro termino notemos que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \left(\mathbb{I}_{\{Y>0\}}\right)^2 = \mathbb{I}_{\{Y>0\}} \cdot \mathbb{I}_{\{Y>0\}} = \mathbb{I}_{\{Y>0\}} } Porque multiplicar dos veces la misma indicadora no aporta nada, entonces ya esta calculada la Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle E[Z^2]} y entonces la Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle V[Z]=E[Z^2]-E^2[Z]} se puede calcular y da finita. Entoces puedo usar LGN, y el limite da lo que ya calcule arriba.
Ejercicio 4
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \{S_n\}_{n\ge 1}} una sucesion de variables aleatorias tal que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle S_n \sim \Gamma(n, \lambda)} . Demuestre que
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{S_n - n/\lambda}{\sqrt{n}/\lambda}}
Converge en distribucion a una normal e indique con que parametros.
Ejercicio 5
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_1, \dots, X_n} una muestra de variables aleatorias con distribucion Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{U}(1, \theta)} . Dar el estimador de maxima verosimilitud de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle q(\theta)=\theta(1-\theta)} . Es consistente?
Ejercicio 6
Construya un intervalo de confianza de nivel Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle 1-\alpha} para el parametro Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle p} de una Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Bi(2,p)} basado en una muestra Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_1, \dots, X_n} . Especifique si el intervalo propuesto es asintotico o exacto.
Parte B
- Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_1, \dots, X_n} una muestra aleatoria con media Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mu} desconocida y varianza Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \sigma^2} desconocida. Considere las hipotesis Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle H_0: \{\mu=\mu_0\}} , Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle H_1: \{\mu<\mu_0\}} . Proponga un test de nivel Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \alpha} . Defina error de tipo I y error de tipo II. Halle una expresion para la funcion de potencia en funcion de alguna distribucion conocida.
- Proponga un ejercicio (Solo el enunciado, no lo resuelva) cuya resolucion requiera testear las hipotesis anteriores.