Diferencia entre revisiones de «Redes Neuronales»

De Cuba-Wiki
Sin resumen de edición
Línea 70: Línea 70:
== Prácticas (Dpto. de Computación) ==
== Prácticas (Dpto. de Computación) ==
== Finales ==
== Finales ==
'''TODO'''
Desde 2020 suelen ser orales y virtuales.
 
== Apuntes ==
== Apuntes ==


* [http://www-2.dc.uba.ar/materias/lrn/pautas%20de%20entrega.pdf Mini-apunte teórico] En la última sección se repasan algunos detalles importantes de cada arquitectura
* [http://www-2.dc.uba.ar/materias/lrn/pautas%20de%20entrega.pdf Mini-apunte teórico] En la última sección se repasan algunos detalles importantes de cada arquitectura
* [https://marinomar.notion.site/Redes-Neuronales-e4c7ee505b0848bebe1a5891ae10ddb1?pvs=4 Apuntes de las teóricas + TPs]


== Curiosidades ==
== Curiosidades ==

Revisión del 21:51 23 jul 2023

Esta materia es de caracter optativo y de duración cuatrimestral. Se dicta los primeros cuatrimestres de cada año. Es correlativas con Probabilidades y Estadística.


Información General sobre la Cursada

Cursada:

  • Dos días de cursada por semana. Teórica y Práctica.


Criterios de aprobación:

  • Entrega de 3 Trabájos Prácticos aprobatorios.
  • Final, en general oral.

Profesor:

  • Dr. Enrique Segura esegura (_at) dc.uba.ar

Programa de la materia

  • Inspiración biológica de las RNA
  • Aprendizaje supervisado
    • Perceptrones
    • Backpropagation y otras estrategias de aprendizaje
  • Aprendizaje no supervisado
    • Modelo de Kohonen
    • Modelo de Fritzke
    • Aprendizaje Hebbiano no supervisado
  • Memorias asociativas
    • Modelo de Hopfield
    • Modelo ferromagnético o estocástico
    • Otras variantes del modelo de Hopfield: continuo, pseudoinversa, BAM
  • Modelo Radial Basis Functions

Contenidos

Inspiración biológica de las RNA

  • Modelo de McCulloch-Pitts
  • Regla de Hebb


Aprendizaje supervisado

  • Perceptrón simple: unidades umbral, unidades lineales, unidades no lineales
  • Regla delta
  • Perceptrón multicapa
  • Backpropagation: asincrónico, sincrónico; mejoras (momento, parámetros adaptativos, y otras)
  • Aplicaciones


Aprendizaje no supervisado

  • Aprendizaje Hebbiano no supervisado
    • Análisis de Componentes Principales (PCA)
    • Regla de Oja
    • Regla de Sanger (Aprendizaje Hebbiano Generalizado)
  • Aprendizaje Competitivo no supervisado
    • Mapas Autoorganizados de Kohonen
  • Aplicaciones


Memorias asociativas

  • Modelo de Hopfield
  • Función de energía
  • Extensiones
    • Estocástica
    • Continua
  • Estabilidad

Prácticas (Dpto. de Computación)

Finales

Desde 2020 suelen ser orales y virtuales.

Apuntes

Curiosidades

Detección de tanques

Bibliografía Recomendada

  • John Hertz, Anders Krogh, & Richard Palmer. Introduction to the theory of neural computation, Addison-Wesley, 1991
  • Simon Haykin. Neural Networks - A Comprehensive Foundation (2E), Pearson Prentice Hall, 1998

Enlaces externos