Diferencia entre revisiones de «Final 13/11/2023 (Análisis II)»

De Cuba-Wiki
Sin resumen de edición
Sin resumen de edición
Línea 14: Línea 14:


'''Ejercicio 2'''
'''Ejercicio 2'''
Sea <math>f : \mathbb{R}^2 \to \mathbb{R}</math> diferenciable, su polinomio de Taylor de orden 2 en (1,1) es <math> P(x,y)=ax^2+2y-bx+c</math>. Y sea <math> g : \mathbb{R} \to \mathbb{R}^2 /  
Sea <math>f : \mathbb{R}^2 \to \mathbb{R}</math> C2, su polinomio de Taylor de orden 2 en (1,1) es <math> P(x,y)=ax^2+2y-bx+c</math>. Y sea <math> g : \mathbb{R} \to \mathbb{R}^2 /  


g(t)=(t+1,2t^3+1)</math>
g(t)=(t+1,2t^3+1)</math>

Revisión del 22:52 22 nov 2023

Ejercicio 1 Sea la superficie Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle E=x^2+y^2+z^2=1} y el plano Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \pi : z=ax } .

a) Hallar parametrizacion de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle C=E \cap \pi} .


b) Hallar todos los valores Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a \in R } tal que la recta tangente a C en el punto (0,1,0) es t(-2,0,2)+(0,1,0).




Ejercicio 2 Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f : \mathbb{R}^2 \to \mathbb{R}} C2, su polinomio de Taylor de orden 2 en (1,1) es Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P(x,y)=ax^2+2y-bx+c} . Y sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle g : \mathbb{R} \to \mathbb{R}^2 / g(t)=(t+1,2t^3+1)} Hallar Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a,b,c \in R} tal que el polinomio de Taylor de orden 2 de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle fog} en (t=0) sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle Q(t) =4t^2+3t+3 }


Ejercicio 3 Hallar maximos y minimos absolutos de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x,y) = x^2-y^2 } en la region Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle D= \lbrace (x,y) \in R^2 / x^2+y^2 \leq 1, x \geq y \rbrace } .

Ejercicio 4 Calcular el volumen del solido Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle W= \lbrace x^2+y^2=z^2, x^2+y^2=z, 0 \leq z \leq 1, x \geq 0 \rbrace } .