Diferencia entre revisiones de «Práctica 7 (LyC Verano)»
(→a)) |
|||
Línea 13: | Línea 13: | ||
==Ejercicio 04== | ==Ejercicio 04== | ||
La extension es el esquema axiomatico que representa la transitividad: | La extension es el esquema axiomatico que representa la transitividad: | ||
( | <math>(\forall x)(\forall y)(( R(x,y) \wedge R(y,z)) \rightarrow R(x,z))</math> | ||
===a)=== | ===a)=== | ||
Esto se supone es explicable sin formalidades rigurosas...si alguien lo puede hacer mejor que lo haga. | Esto se supone es explicable sin formalidades rigurosas...si alguien lo puede hacer mejor que lo haga. | ||
Línea 21: | Línea 21: | ||
Si era completo sin el axioma de transitividad, luego tambien lo sera con el, ya que podremos probar las mismas cosas como si nos olvidaramos de que agregamos un axioma. | Si era completo sin el axioma de transitividad, luego tambien lo sera con el, ya que podremos probar las mismas cosas como si nos olvidaramos de que agregamos un axioma. | ||
===c)=== | ===c)=== | ||
Debemos ver que hay cosas que podemos probar que no son ciertas para cualquier modelo. Es evidente que la transitividad no sera cierta en un modelo no transitivo y sin embargo la podremos demostrar debido a nuestro axioma | <br>Debemos ver que hay cosas que podemos probar que no son ciertas para cualquier modelo. Es evidente que la transitividad no sera cierta en un modelo no transitivo y sin embargo la podremos demostrar debido a nuestro axioma | ||
Sea un modelo M = {a,b,c} | <br>Sea un modelo M = {a,b,c} | ||
Sea Rm = {(a,b), (b,c)} | <br>Sea Rm = {(a,b), (b,c)} | ||
R(x,y) sii (x==a | <br>R(x,y) sii <math>(x==a \wedge y==b) O (x==b \wedge y==c)</math> | ||
Sea Fi = ( | <br>Sea Fi = <math>(\forall x)(\forall y)(( R(x,y) \wedge R(y,z)) \rightarrow R(x,z))</math> | ||
q.v.q. M | <br>q.v.q. <math>M \neg\vDash Fi</math>, o sea, <math>(\forall v) M \neg\vDash Fi[v]</math> | ||
Supongamos que no, luego ( | <br>Supongamos que no, luego <math>(\exists v) tq M \vDash fi[v]</math> | ||
o sea A | <br>o sea <math>A \vDash (\forall x)(\forall y)(( R(x,y) \wedge R(y,z)) \rightarrow R(x,z)) </math> <br>sii <math>\forall k1,k2,k3 / v' = v( (x=k1)(y=k2)(z=k3)) \in M, M \vDash R(x,y) Y R(y,z) \rightarrow R(x,z)[v']</math> | ||
<br>sii M \neg\vDash R(x,y) \wedge R(y,z)[v'] o M \vDash R(x,z)[v']</math> | |||
sii M | <br>Pero si pasa que k1=a, k2=b, k3=c. En ese caso <math>M \vDash R(x,y) \wedge R(y,z)[v']</math> porque <math>(a,b) \in Rm \wedge (b,c) \in Rm</math> | ||
Pero si pasa que k1=a, k2=b, k3=c. En ese caso M | <br>Pero <math>A \neg\vDash R(x,z)[v']</math> | ||
==Ejercicio 05== | ==Ejercicio 05== |
Revisión del 02:27 10 mar 2007
Ejercicio 01
Ejercicio 02
Es satifacible, y por lo tanto tambien consistente. Sea la propiedad P: P(x) = (x>1) No pasa que para todo x se cumple x, es decir, existe uno para el cual no se cumple. (De hecho el numero 1 o 0 no cumplen dicha propiedad) Luego podemos instanciar x2,x3,x4 ,.... en los naturales mayores que 1, cualesquiera sean. Eso nos dara una valuacion satisfacible
Ejercicio 03
a)
b)
c)
Ejercicio 04
La extension es el esquema axiomatico que representa la transitividad: Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\forall x)(\forall y)(( R(x,y) \wedge R(y,z)) \rightarrow R(x,z))}
a)
Esto se supone es explicable sin formalidades rigurosas...si alguien lo puede hacer mejor que lo haga. Es correcta si todo lo demostrable en nuestro sistema axiomatico es realmente una verdad de nuestro modelo, es decir, es una consecuencia de nuestro modelo. Si agarramos un modelo transitivo cualquiera, podemos probar todas las cosas anteriores a agregar a nuestro modelo, y ademas la transitividad, que es justamente la particularidad que tendra nuestro modelo.
b)
Si era completo sin el axioma de transitividad, luego tambien lo sera con el, ya que podremos probar las mismas cosas como si nos olvidaramos de que agregamos un axioma.
c)
Debemos ver que hay cosas que podemos probar que no son ciertas para cualquier modelo. Es evidente que la transitividad no sera cierta en un modelo no transitivo y sin embargo la podremos demostrar debido a nuestro axioma
Sea un modelo M = {a,b,c}
Sea Rm = {(a,b), (b,c)}
R(x,y) sii Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (x==a \wedge y==b) O (x==b \wedge y==c)}
Sea Fi = Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\forall x)(\forall y)(( R(x,y) \wedge R(y,z)) \rightarrow R(x,z))}
q.v.q. Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle M \neg\vDash Fi}
, o sea, Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\forall v) M \neg\vDash Fi[v]}
Supongamos que no, luego
o sea
sii
sii M \neg\vDash R(x,y) \wedge R(y,z)[v'] o M \vDash R(x,z)[v']</math>
Pero si pasa que k1=a, k2=b, k3=c. En ese caso porque
Pero
Ejercicio 05
Si definimos la funcion la suma como f(x,y) = x + y + 1.
Esto cumple los axiomas dados, pero sin embargo es evidente que no cumple con la suma en los naturales.
Ejercicio 06
a)
Si tomamos φi = "El modelo tiene al menos i elementos", un posible conjunto es Γ={φ1,φ2,φ3,..}
b)
Sup. que es posible. Si tomamos Γ={φ1,φ2,φ3,..}, por compacidad, existe un subconjunto finito satisfacible. Sea φ' = "El dominio es finito". Entonces si tomamos por ej. {φ1,φ2}U{φ'}, es satisfacible ya que hay modelos que lo hacen valido. Pero si tomamos ΓU{φ'}, estamos diciendo que el dominio es finito, pero al ser Γ infinito, es satisfacible si tiene infinitos elementos. Por lo tanto llegamos a un ABS
Ejercicio 07
Ejercicio 08
Si extendemos nuestro modelo con un c y un d que representan numeros/nodos arbitrarios y tomamos
φi = "No hay un camino de longitud i entre c y d".
longitud dos en primer orden se escribiria:
¬( x)(R(c,x) Y R(x,d))
Y se puede generalizar facilmente para mostrar que es posible escribirlo en primer orden.
Luego definimos lo que queremos probar que no es expresable.
Sea
ψ = "Entro todo par de nodos hay un camino de longitud finita"
Sea Γ = {φ1,φ2,φ3,..} U {ψ} un conjunto infinito.
Sabemos que cualquier subconjunto finito que eligamos de Γ es satisfacible. (Ya que si bien podria no haber camino de longitud Maximo entre todos los φi elegidos, podria haber uno de longitud i+1.
Entonces por compacidad Γ es satisfacible. Absurdo porque si no tienen camino de ninguna longitud los nodos c y d , luego no podemos decir que entre todo par d nodos hay un camino de longitud finita.
Absurdo que provino d pensar que ψ era expresable.
Ejercicio 09
a)
b)
c)
Ejercicio 10
a)
...
Con lo cual la rama queda saturada, por lo que la negacion es satisfacible
b)
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall x P(x, a) }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg \exists y P(b, y) }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P(b, a) }
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg P(b, a) }
×
Ejercicio 11
Ejercicio 12
a)
Se puede ver que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall x \exists y \forall z \exists w ( P(x,y) \vee \neg P(z,w) ) } no es tautologia, ya que si tomamos P(x,y) = x=0 ٨ y=0 se hace falsa la formula
b)
Si
Ejercicio 13
Antes podemos reescribir la formula de la siguiente forma: P٨Q→Z <=> ¬(P٨Q)٧Z <=> ¬P٧¬Q٧Z . Con lo cual la negacion queda P٨Q٨¬Z. Entonces:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (1)[ \forall x \forall y \forall z P(x,y,z) \rightarrow P(y,x,z) ] \wedge (2)[ \exists x \forall y \exists z P(y,z,x) ] \wedge (3)\neg [ \exists x \forall y \exists z P(z,y,x) ] }
(4)(Usando 2)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall y \exists z P(y,z,t) }
(5)(Usando 3)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg \forall y \exists z P(z,y,t) }
(6)(Usando 5)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg \exists z P(z,t1,t) }
(7)(Usando 4)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists z P(t1,z,t) }
(8)(Usando 7)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P(t1,t2,t) }
(9)(Usando 6)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg P(t2,t1,t) }
(10)(Usando 1)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P(t1,t2,t) \rightarrow P(t2,t1,t) }
(11)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg P(t1,t2,t) \vee P(t2,t1,t) }
(12)(Usando 8,9)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle P(t1,t2,t) \vee \neg P(t2,t1,t) }
(13) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x \vee x }