Diferencia entre revisiones de «Práctica 7 (LyC Verano)»

De Cuba-Wiki
Línea 17: Línea 17:


===b)===
===b)===
Sup. que es posible. Si tomamos Γ={φ1,φ2,φ3,..}, por compacidad, existe un subconjunto finito satisfacible. Sea φ' = "El dominio es finito". Entonces si tomamos por ej. {φ1,φ2}U{φ'}, es satisfacible ya que hay un modelo que lo permite. Pero si tomamos ΓU{φ'}, estamos diciendo que el dominio es finito, pero al ser Γ infinito, es satisfacible si tiene infinitos elementos. Por lo tanto llegamos a un ABS
Sup. que es posible. Si tomamos Γ={φ1,φ2,φ3,..}, por compacidad, existe un subconjunto finito satisfacible. Sea φ' = "El dominio es finito". Entonces si tomamos por ej. {φ1,φ2}U{φ'}, es satisfacible ya que hay modelos que lo hacen valido. Pero si tomamos ΓU{φ'}, estamos diciendo que el dominio es finito, pero al ser Γ infinito, es satisfacible si tiene infinitos elementos. Por lo tanto llegamos a un ABS


==Ejercicio 07==
==Ejercicio 07==

Revisión del 03:55 9 mar 2007

Ejercicio 01

Ejercicio 02

Ejercicio 03

a)

b)

c)

Ejercicio 04

a)

b)

c)

Ejercicio 05

Ejercicio 06

a)

Si tomamos φi = "El modelo tiene al menos i elementos", un posible conjunto es Γ={φ1,φ2,φ3,..}

b)

Sup. que es posible. Si tomamos Γ={φ1,φ2,φ3,..}, por compacidad, existe un subconjunto finito satisfacible. Sea φ' = "El dominio es finito". Entonces si tomamos por ej. {φ1,φ2}U{φ'}, es satisfacible ya que hay modelos que lo hacen valido. Pero si tomamos ΓU{φ'}, estamos diciendo que el dominio es finito, pero al ser Γ infinito, es satisfacible si tiene infinitos elementos. Por lo tanto llegamos a un ABS

Ejercicio 07

Ejercicio 08

Ejercicio 09

a)

b)

c)

Ejercicio 10

a)










...

Con lo cual la rama queda saturada, por lo que la negacion es satisfacible

b)









×

Ejercicio 11

Ejercicio 12

a)

Si








b)

Si

Ejercicio 13


Antes podemos reescribir la formula de la siguiente forma: P٨Q→Z <=> ¬(P٨Q)٧Z <=> ¬P٧¬Q٧Z . Con lo cual la negacion queda P٨Q٨¬Z. Entonces:



(4)(Usando 2)
(5)(Usando 3)
(6)(Usando 5)
(7)(Usando 4)
(8)(Usando 7)
(9)(Usando 5)
(10)(Usando 1)
(11)
(12)(Usando 8,9)
(13)