Finales Virtuales Tleng: Marzo de 2021

De Cuba-Wiki
Revisión del 17:49 27 feb 2022 de 2800:810:49e:299e:a08c:a737:cc6d:d4 (discusión) (→‎04/03)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)

Los finales virtuales consistieron de uno o dos ejercicios escritos que le eran asignados a cada persona que rendia particularmente, abajo estan la lista de preguntas que se tomaron en las distintas fechas.

01/03

1) Si S es una GLC no Recursiva a izquierda. Entonces para todo par de no terminales A y B en S con Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow_L B \alpha } una derivación más a la izquierda, la cantidad de pasos de derivación i está acotada por una constante c, es decir Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle i \leq c } .

2) Considerar la siguiente forma normal de 3-Chomsky donde todas las producciones son de la forma

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow a }

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow BC }

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow BCD }

No se permiten producciones Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow B }

donde A, B, C, D son no terminales, a es terminal. Entonces son 3-Chomsky

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle S \rightarrow ABC}

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow BDE }

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow a }

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow BC }

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow BC }

No son 3-Chomsky

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow B }

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow ABCDE } tampoco es 3-Chmsky

Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \rightarrow abcedef } tampoco es 3-Chomsky

Dar un algoritmo que pase una gramatica libre de contexto a forma normal 3-Chomsky.

Dar la complejidad computacional.

04/03

1) Dar un algoritmo que transforme cada gramatica libre de contexto G en otra G' que reconoce el mismo lenguaje pero es tal que si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_1... X_k} es el lado derecho de una producción entonces todos los símbos Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle X_1..X_k} son distintos.

Justificar la correctitud y Dar la complejidad del algoritmo

Poner varios ejemplos

2) a) Determinar Verdadero o Falso y dar la demostración:

a- Para todo automata de pila no deterministico existe otro deterministico equivalente, es decir, que reconoce exactamente el mismo lenguaje.

b- Para todo automata de pila deterministico existe otro equivalente que siempre consume toda la entrada.

c- Si un lenguaje es libre de contexto su complemento también

3) Dar un algoritmo que transforme cada gramatica libre de contexto G sin producciones A-> lambda en otra G' que reconoce el mismo lenguaje pero tal que cada producción es de la forma A-> a alpha, con a un símbolo terminal y alpha una cadena de no-terminales.

Justificar la correctitud y Dar la complejidad del algoritmo

Poner ejemplos

Ayuda: pensar en el algoritmo de eliminiacion de la recursión