Práctica 4 (LyC Verano)

De Cuba-Wiki

Ejercicio 01


a) v(α) = v(¬p1) = 1
b) v(α) = v( (p5 ٧ 0) → 0 ) = v(p5 → 0) = v(p5) = ?
c) v(α) = v( (0 ٧ 0) → 0 ) = v(0 → 0) = 1
d) v(α) = v(¬p4) = ?
e) v(α) = v( (p8 → p5)→(p8 ٨ p0) ) = ?

Ejercicio 02

a)


1) v(α1) = 1 ↔ p1=0 ٧ p3=1 ٧ p1=1
2) v(α2) = 1 ↔ p2=1 ٧ (p3=0 ٨ p1=0)
3) v(α3) = 1 ↔ (p2=0 ٨ p3=0) ٧ (p2=1) ٧ (p5=0 ٧ p3=1)

b)


1) Esto vale si pasa a.1) ٨
2) Idem 1) para α2
3) Idem 1) para α3

Ejercicio 03

(Para simplificar, T=tautologia, F=contradiccion, C=contingencia)
a) v(α٨β)=1 ↔ v(α)=1 ٨ v(β)=1 ↔ α T y β T
b) v(α٧β)=0 ↔ ¬v(α)=1 ٨ ¬v(β)=1 ↔ v(α)=0 ٨ v(β)=0 ↔ α F y β F
c) v(α→β)=0 ↔ v(α)=1 ٨ v(β)=0 ↔ α T y β F
d)
←) Si v(α)=0 ٧ v(β)=1 → v(α→β)=1
→) Sup que no. Hay 4 casos:

  • α T y β F → v(α→β)=0 (ABS)
  • α T y β C → si v(β)=0 → v(α→β)=0 (ABS)
  • α C y β F → si v(α)=1 → v(α→β)=0 (ABS)
  • α C y β C → Sea el caso α=β → v(α→β)=1, pero (ABS)

Ejercicio 04

a)

Sup que no. Hay 4 casos:

  • α T y β T → v(α٨β)=1
  • α T y β F → v(α٨β)=0
  • α F y β T → v(α٨β)=0
  • α F y β F → v(α٨β)=0

→ α٨β nunca es C (ABS)

b)

Sup que no. Hay 2 casos:

  • α٨β T → α T y β T
  • α٨β F → α F o β F

→ α y β nunca son ambas C (ABS)

Ejercicio 05

Pueden pasar 2 cosas: v(α)=0 ٨ v(pi)=1 o v(α)=1 ٨ v(pi)=0 → Vale si α=¬pi

Ejercicio 06

a)

b)

c)

Ejercicio 07

a)

Definimos todos los conectivos en funcion a los elementos para cada conjunto:
1) {¬,٨,٧}

  • ¬p, p٨q, p٧q ya estan definidos
  • p→q = ¬p٧q


2) {¬,٨}

  • ¬p, p٨q ya estan definidos
  • p٧q = ¬(¬p ٨ ¬q)
  • p→q = ¬p٧q


3) {¬,٧}

  • ¬p, p٧q ya estan definidos
  • p٨q = ¬(¬p ٧ ¬q)
  • p→q = ¬p٧q


4) {¬,→}

  • ¬p, p→q ya estan definidos
  • p٨q = ¬(p → ¬q)
  • p٧q = ¬p → q

b)


1) {¬} Como α solo usa el ¬, α siempre sera contingencia
2) {٧,٨} Sup que lo es. Sea f | f(p)=1 para todo p, y vf la valuacion que extiende a f. Usando induccion en complejidad de α:

  • Si α=p → vf(α)=vf(p)=1
  • Si α=p٧q → vf(α)=vf(p٧q)=max{vf(p),vf(q)}=max{1,1}=1
  • Si α=p٨q → vf(α)=vf(p٨q)=min{vf(p),vf(q)}=min{1,1}=1

→ No es posible construir un α tq α=¬p, por lo que no hay un v | v(α)=0 → No es adecuado (ABS)
3) {٧,→} Sale muy similar a 2), si tomamos

  • Si α=p→q → vf(α)=vf(p→q)=max{1-vf(p),vf(q)}=max{0,1}=1

→ Volvemos a obtener un ABS

Ejercicio 08

a)

α β  α|β α↓β
1 1   0   0
1 0   1   0
0 1   1   0
0 0   1   1

Como se puede ver, α|β equivale a NAND y α↓β a NOR.

b)

Definimos los conectivos:
Para {|}:

  • ¬p = p|p
  • p٨q = ¬(p|q)
  • El resto sale ya que {¬,٨} es adecuado


Para {↓}:

  • ¬p = p↓p
  • p٧q = ¬(p↓q)
  • El resto sale ya que {¬,٧} es adecuado

c)

Ejercicio 09

a)

  • ¬p = *1(p,p,p) = (p→(¬p ٨ p)) = p→0 = ¬p
  • p→q = *1(p,¬p,q) = (p→(¬¬p ٨ q)) = (p→(p ٨ q)) = p→q
  • El resto sale ya que {¬,→} es adecuado

→ *1 es adecuado

b)

No es adecuado, ya que utiliza el conjunto {٨,→}, que tampoco lo es

Ejercicio 10

a)

  • p→q ya esta definido
  • ¬p = p→F = ¬p
  • El resto sale ya que {¬,→} es adecuado

→ {F,→} es adecuado

b)

No es adecuado (se prueba similar al ej. 7)

Ejercicio 11

a)

b)


←) Con(Γ) es satisfacible y Γ Con(Γ) ( ver 12.a ) → por a) Γ es satisfacible
→) Sea v valuacion que satisface Γ → por def. de Con(), v(α)=1 α Є Con(Γ) → Con(Γ) es satisfacible

Ejercicio 12

a)

Sea α Є Γ. Si v satisface a Γ, tambien satisface a α → α Є Con(Γ). Por lo tanto Γ Con(Γ)

b)

Sea α Є Con(Γ1). Si v satisface a Γ2, tambien satisface a Γ1, luego a α → α Є Con(Γ2). Por lo tanto, Con(Γ1) Con(Γ2)

c)

d)


) Sea α Є Con(Con(Γ)). Si v satisface a Con(Γ), tambien satisface a α. Si w satisface a Γ, tambien satisface a Con(Γ), luego a α → α Є Con(Γ). Por lo tanto Con(Con(Γ)) Con(Γ)
) Vale usando a)
→ Con(Con(Γ))=Con(Γ)

Ejercicio 13

a)

b)

Ejercicio 14

a)

b)

c)

d)

Ejercicio 15

a)

b)

Ejercicio 16

Ejercicio 17