Ejercicio 01
Ejercicio 02
Ejercicio 03
a)
b)
c)
Ejercicio 04
a)
b)
c)
Ejercicio 05
Ejercicio 06
a)
Si tomamos φi = "El modelo tiene al menos i elementos", un posible conjunto es Γ={φ1,φ2,φ3,..}
b)
Sup. que es posible. Si tomamos Γ={φ1,φ2,φ3,..}, por compacidad, existe un subconjunto finito satisfacible. Sea φ' = "El dominio es finito". Entonces si tomamos por ej. {φ1,φ2}U{φ'}, es satisfacible ya que hay modelos que lo hacen valido. Pero si tomamos ΓU{φ'}, estamos diciendo que el dominio es finito, pero al ser Γ infinito, es satisfacible si tiene infinitos elementos. Por lo tanto llegamos a un ABS
Ejercicio 07
Ejercicio 08
Ejercicio 09
a)
b)
c)
Ejercicio 10
a)
...
Con lo cual la rama queda saturada, por lo que la negacion es satisfacible
b)
×
Ejercicio 11
Ejercicio 12
a)
Si
b)
Si
Ejercicio 13
Antes podemos reescribir la formula de la siguiente forma: P٨Q→Z <=> ¬(P٨Q)٧Z <=> ¬P٧¬Q٧Z . Con lo cual la negacion queda P٨Q٨¬Z. Entonces:
(4)(Usando 2)
(5)(Usando 3)
(6)(Usando 5)
(7)(Usando 4)
(8)(Usando 7)
(9)(Usando 5)
(10)(Usando 1)
(11)
(12)(Usando 8,9)
(13)