Final 28/02/2014 (Análisis II)

De Cuba-Wiki

Plantilla:Back

Ejercicio 1

Sea


A) Decir para què valores de n pertenecientes a N existen todas las derivadas direccionales respecto de vectores con norma unitaria en el (0,0)

B) Decir para què valores de n pertenecientes a N f(x,y) es diferenciable en el (0,0)

Ejercicio 2

Sea tal que .

  1. Encontrar la expresión del polinomio de Taylor de grado 2 para el punto . Usarlo para estimar y acotar el error cometido, sabiendo que .
  2. Hallar los puntos críticos de y determinar si son máximos, mínimos o puntos silla.
  3. Determinar si tiene máximos y/o mínimos absolutos y, en caso de que los tenga, hallarlos.

Ejercicio 3

Demostrar que si es diferenciable en , entonces es continua en dicho punto.

Ejercicio 4

Demostrar la Regla de Barrow.