Ejercicio 1
Sean dos conjuntos de fórmulas de la lógica proposicional.
Decidir en cada caso si la afirmación es verdadera o falsa y justificar apropiadamente (i.e., demostrar o dar un contraejemplo).
a. .
b. .
c. Si entonces .
d. .
Ejercicio 2
Sea un conjunto de fórmulas de la lógica proposicional. Demostrar que es maximal consistente si y solo si existe una única valuación tal que .
Ejercicio 3
Una función se dice casi sobreyectiva si es finito y no vacío. Demostrar que, dado un lenguaje de primer orden con igualdad y un símbolo de función unario, no es expresable la propiedad “ es una función casi sobreyectiva”.
Ejercicio 4
Sea un lenguaje de primer orden y sean y dos clases de -estructuras.
Decidir en cada caso si la afirmación es verdadera o falsa y justificar apropiadamente (i.e., demostrar o dar un contraejemplo).
a. Sea un conjunto de axiomas correcto y completo respecto a . Si , entonces no es completa respecto a .
b. Sean y . Si entonces .
Nota: Decimos que sii para toda -estructura
sucede que .