Práctica 6 (LyC Verano)
Ejercicio 01
a)
b)
c)
d)
e)
f)
Ejercicio 02
Entre corchetes las ligadas:
a)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall x \exists y P([x],[x]) }
b)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists x P(y,y) \rightarrow \exists y P([y],z) }
c)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists x ( \exists y P([x],[x]) \wedge P([x],y) ) }
d)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall z ( \forall x P([z],[x]) ) \vee P(x,z) }
Ejercicio 03
Ejercicio 04
a)
Esta propiedad equivale a: Para todo x,y en R tq x<y, existe un z en Q tq x<z<y
Esto significa que los racionales son densos en los reales, es decir, siempre hay un racional entre dos reales cualesquiera.
b)
Esta propiedad significa: Todos los dias nace un esclavo
c)
Esta propiedad significa: La suma de pares es impar (No habran querido poner al reves?)
d)
- 1: Hay una persona x que quiere a todas las personas
- 2: Toda persona y es querida al menos por una persona x
- 3: Hay una persona x tal que, si hay una persona y que quiere a todas las personas, entonces x quiere a y
- 4: Hay una persona x que no quiere a ninguna persona
Ejercicio 05
a)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg(\exists x) Politico(x) \wedge Honesto(x) }
b)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg(\forall x) Ave(x) \rightarrow Vuela(x) }
c)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\forall x) (Trasc(x) \rightarrow Irrac(x)) \wedge (Irrac(x) \rightarrow Trasc(x)) }
d)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\exists x) ( Ivanoff(x) \wedge (\forall y) \neg Odia(y,y) \rightarrow Odia(x,y) )}
e)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle ((\forall x)(\exists y)Ama(x,y) \wedge \neg(\exists x)(\forall y)Ama(x,y)) \vee (\exists x)(\forall y)Ama(x,y) }
Ejercicio 06
a)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\exists x)(\exists y) (x \neq y) }
b)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\exists x)((\exists y) (x \neq y) \wedge (\forall z)(x = z \vee y = z)) }
c)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \neg(\exists x)(x = x) \vee (\exists x)(\forall y) (x = y) \vee }
Punto b)
d)Punto c) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \wedge (\exists x)P(x) }
e)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\exists x)(P(x) \rightarrow (\forall y) (x = y)) }
f)Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (\exists x)(P(x) \wedge (\forall y) (x = y)) }
Ejercicio 07
Ejercicio 08
Ejercicio 09
Recordemos que un elemento de una interpretacion es distinguible si existe un predicado unario que se verifica solo para ese elemento.
En el caso de (N, ·), el uno es el unico elemento neutro: Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall y (y.x = y)}
En el caso de (N, +), el uno es el unico elemento que verifica que si dos numeros sumados dan 1, uno es cero y el otro no: Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall y \forall z (y+z = x \rightarrow (\forall w(w+y = w) \wedge \exists w(w+z \neq w)) \vee (\forall w(w+z = w) \wedge \exists w(w+y \neq w)))}
Ejercicio 10
(El unico predicado binario sera notado con Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \leq} )
a)
Los siguientes seis predicados se verifican en un solo elemento del diagrama, y cada elemento verifica uno solo de ellos.
- El minimo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall y(x \leq y). }
- El que esta a la derecha del minimo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y\forall z(z \leq x \rightarrow y = z) \wedge \exists z\exists y(z \neq y \wedge z \neq x \wedge y \neq z \wedge \forall w(x \leq w \rightarrow (w = y \vee w = z \vee w = x))) }
Tiene por lo menos uno abajo, y exactamente dos arriba.
- El que esta a la izquierda del minimo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y\forall z(z \leq x \rightarrow z = y) \wedge \exists y\exists z\exists w(x \leq w \wedge x \leq z \wedge x \leq y \wedge z \neq y \wedge z \neq w \wedge z \neq x \wedge y \neq w \wedge y \neq x \wedge w \neq x \wedge \forall v(x \leq v \rightarrow (v = w \vee v = y \vee v = z))). }
Hay uno abajo, y exactamente tres arriba.
- El que esta a la izquierda del maximo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y\forall z(x \leq z \rightarrow y = z) \wedge \exists z\exists y(z \neq y \wedge z \neq x \wedge y \neq z \wedge \forall w(w \leq x \rightarrow (w = y \vee w = z \vee w = x))). }
- El que esta a la derecha del maximo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y\forall z(x \leq z \rightarrow z = y) \wedge \exists y\exists z\exists w(w \leq x \wedge z \leq x \wedge y \leq x \wedge y \neq z \wedge w \neq z \wedge z \neq x \wedge y \neq w \wedge y \neq x \wedge w \neq x \wedge \forall v(v \leq x \rightarrow (v = w \vee v = y \vee v = z))). }
- El maximo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall y(y \leq x). }
b)
Los siguientes cinco predicados se verifican en un solo elemento del diagrama, y cada elemento verifica uno solo de ellos.
- El minimo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \forall y(x \leq y).}
- El que esta arriba del minimo:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y(y \neq x \wedge y \leq x \wedge \forall z(z \leq x \rightarrow z = y)) \wedge \exists y\exists z(z \neq y \wedge z \neq x \wedge y \neq x \wedge x \leq z \wedge x \leq y) }
Tiene exactamente uno abajo y dos arriba.
- El que sobresale:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y\exists z(y \neq x \wedge z \neq y \wedge z \neq x \wedge y \leq x \wedge z \leq x \wedge \forall w(w \leq x \rightarrow (w = y \vee w = z \vee w = x)) \wedge \neg\exists y(y \neq x \wedge x \leq y))}
Tiene exactamente dos abajo y ninguno arriba.
- El de abajo del “maximo”:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \exists y(y \neq x \wedge x \leq y \wedge \forall z(x \leq z \rightarrow (z = y \vee x = z))).}
Tiene exactamente uno arriba.
- El maximo: Tomo la conjuncion de las negaciones de todos los predicados anteriores. Hay un solo elemento que la cumple, y es este.
Ejercicio 11
Probar que si el universo de una interpretacion es finito con n+1 elementos, y tiene la propiedad que n elementos del universo son distinguibles, entonces todos los elementos son distinguibles.
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \phi _i} la funcion que es valida solo al ser evaluada en el elemento i, es decir, la funcion que distingue al elemento i del conjunto. Por hipotesis, existen las funciones Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \phi _1, \phi _2, ... \phi _n} .
Entonces la funcion que distingue al ultimo elemento, que es la que falta para que todos sean distinguibles, es:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \phi _{n+1} = \neg \phi _1 \wedge \neg \phi _2 \wedge ... \wedge \neg \phi _n}