Final 21/12/2010 (Análisis II)
Ejercicio 1
Parte a
Posible resolución
Puede verse que si las derivadas parciales de son:
Y que por lo tanto:
Dado que la división no está definida para el 0, entonces hay que calcular las derivadas parciales utilizando la definición y que ambas verifiquen que dan 0:
Es decir que ambas derivadas parciales existen en (0,0) y coinciden con lo que esperábamos verificar.
Parte b
Posible resolución
Para probar que las derivadas cruzadas son distintas lo podemos hacer por definición. Es decir que tenemos:
Por lo que probamos que las derivadas cruzadas son distintas en el (0,0).
Parte c
Posible resolución
Que sea de clase quiere decir que las derivadas parciales existen y son continuas. Sabemos que existen en todos los puntos del dominio, pues en los puntos distintos del (0,0) es una composición de funciones de clase y por tanto de clase . Sabemos que en el (0,0) existen las derivadas parciales y su valor es (0,0), restaría probar que son continuas en el (0,0).
Parte d
Resolución
Sabemos por el teorema de Schwarz que si es entonces . Por contrarrecíproco como no son iguales no es .