Final 23/12/2002 (Álgebra I)
Ejercicio 1
Determinar cuántas funciones biyectivas satisfacen que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(a) \equiv a \; (8)} para todo Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a \in \left \{1, 2, 3, \ldots , 16 \right \} }
Ejercicio 2
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \sim } la relación de equivalencia en Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle G_8 } definida por
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle z \sim w \; \Leftrightarrow \; z^6 = w^6 }
Hallar la clase de equivalencia de Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} } i }
Ejercicio 3
Hallar los Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a \in \mathbb{R}} tales que (al menos) una raíz cúbica de la unidad es raíz del polinomio
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f = X^7 - X^4 + aX^3 - 2}
Para cada valor de a hallado, encontrar todas las raíces de en .
Ejercicio 4
Hallar todos los tales que
Ejercicio 5
Sea la sucesión de polinomios definida por:
Probar que, para todo , 1 es raíz doble de