Parcial de Lógica Verano 2016 (LyC)
El examen es a libro abierto y se puede suponer demostrado lo dado en las clases y los ejercicios de las guías colocando referencias claras. Entregar cada ejercicio en hojas separadas. En cada hoja debe figurar nombre, apellido y número de orden. El examen consta de 4 ejercicios de igual valor. Cada ejercicio será calificado con A (aprobado), R (regular) o I (insuficiente), ocasionalmente con un signo - (menos). Para aprobar un parcial es necesario tener al menos dos ejercicios calificados con A o A-. Para promocionar es necesario tener al menos tres ejercicios calificados con A o A- en ambos parciales o sus correspondientes recuperatorios.
Ejercicio 1
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \clubsuit} un conectivo binario tal que para toda Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v} valuación,
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle v \models a \clubsuit b \Longleftrightarrow ((v \models \alpha \text{ y } v \models \beta) \text{ o } (v \not\models \alpha \text{ y } v \not\models \beta)) }
Demostrar que el conjunto Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \lbrace \rightarrow, \clubsuit \rbrace} no es adecuado.
Ejercicio 2
Decidir si son verdaderas o falsas las siguientes afirmaciones. Justificar la respuesta.
- Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma} y Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma'} dos conjuntos consistentes de fórmulas de la lógica proposicional. Si Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma \cap \Gamma'} es maximal consistente entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma} y Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma'} son iguales.
- Sean Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma} y Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma'} dos conjuntos inconsistentes de fórmulas de la lógica proposicional. Entonces Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \Gamma \cap \Gamma'} no es maximal consistente.
Ejercicio 3
Decimos que un modelo de primer orden es de equivalencia si todas sus relaciones binarias son de equivalencia. Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{L} = \lbrace\mathcal{R}\rbrace} , un lenguaje de primer orden con un símbolo de predicado binario Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{R}} y sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle SQ} la axiomatización correcta y completa respecto a la clase de todos los modelos vista en clase.
- Proponer una axiomatización Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle SQ_{equiv}} que extienda a Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle SQ} y que sea correcta y completa respecto a la clase de modelos que son de equivalencia. Justificar apropiadamente que la axiomatización propuesta cumple lo pedido.
- Demostrar que la axiomatización dada en el ítem anterior es completa pero no es correcta respecto a la clase de todos los modelos.
Ejercicio 4
Sea Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{L} = \lbrace =, \mathcal{R} \rbrace} un lenguaje de primer orden con igualdad y un símbolo de predicado binario Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathcal{R}} . Decimos que una relación Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle R} tiene sus ciclos bajo control si para todo elemento Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x} del dominio existe Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle k \in \mathbb{N}} tal que para todo ciclo con origen en Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x} de la forma Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle R(x,y_1), R(y_1,y_2), \dots, R(y_{n-1},y_n), R(y_n,x)} con Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle todosDistintos(x, y_1, \dots, y_n)} , se tiene que Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle n \leq k} .
Demostrar que no es posible expresar en primer orden que una relación tiene sus ciclos bajo control.