Práctica 1 (Paradigmas)
De Cuba-Wiki
Plantilla:Back Plantilla:Revisar guías
Funciones Auxiliares
foldr :: (a -> b -> b) -> b -> [a] -> b foldr f z [] = z foldr f z (x:xs) = f x (foldr f z xs)
foldr ((:) . (*2)) [] [1,2]
((:) . (*2)) 1 (foldr ((:) . (*2)) [] [2]) ((:) . (*2)) 1 ((:) . (*2)) 2 (foldr ((:) . (*2)) [] []) ((:) . (*2)) 1 ((:) . (*2)) 2 [] ((:) . (*2)) 1 [4] [2,4]
foldl :: (a -> b -> a) -> a -> [b] -> a foldl f z [] = z foldl f z (x:xs) = foldl f (f z x) xs
countElem :: Eq a => a -> [a] -> Int countElem i = length . filter (i==)
tieneRepetidas xs = length [x | x <- xs, countElem x xs > 1] > 0
Ejercicio 1
substract :: Float -> Float -> Float substract = flip (-)
evaluarEn0 :: Num a => (a -> b) -> b evaluarEn0 = \f->f 0
dosVeces :: (a -> a) -> a -> a dosVeces = \f -> f.f
flipAll :: [a -> b -> c] -> [b -> a -> c] flipAll = map flip
Ejercicio 2
curry2 :: ((a,b) -> c) -> a -> b -> c curry2 f a b = f (a,b)
uncurry2 :: (a -> b -> c) -> (a,b) -> c uncurry2 f (a,b) = f a b
Ejercicio 3
[1,1,2]
Ejercicio 4
pitagóricas :: [(Integer,Integer,Integer)] pitagóricas = [(a,b,c) | a <- [1..], b <-[1..], c <- [1..], a^2 + b^2 == c^2]
Se cuelga en (1, 1, inf)
pitagóricas1 = [(a,b,c) | a <- [1..], b <- [1..(a^2)], c <- [1..(a^2 + b^2)], a^2 + b^2 == c^2]
pitagóricas2 = [(a,b,c) | c <- [1..], a <- [1..c^2], b <- [1..c^2], a^2 + b^2 == c^2]
Ejercicio 5
primos :: [Integer] primos = take 1000 allPrimes allPrimes :: [Integer] allPrimes = [x | x <- [1..], length (divisores x) == 2] where divisores x = [d | d <- [1..x], mod x d == 0]
Ejercicio 6
partir :: [a] -> [([a],[a])] partir xs = [p | i <- [0..length xs], p <- [splitAt i xs]]
(bis)
partir :: [a] -> [([a],[a])] partir xs = [(take i xs,drop i xs)|i<-[0..length xs]]
Ejercicio 7
listasQueSuman :: Int -> [ [Int] ] listasQueSuman 0 = [[]] listasQueSuman n = [(x:xs) | x<-[1..n],xs<-listasQueSuman (n-x)]
Ejercicio 8
listasPositivas :: [ [Int] ] listasPositivas = [xs | n<-[0..], xs<-listasQueSuman n]
Ejercicio 9
I
sum2 :: [Integer] -> Integer sum2 xs = foldr (+) 0 xs
elem2 :: Eq a => a -> [a] -> Bool elem2 x xs = foldr ((||) . (==x)) False xs
concat2 :: [a] -> [a] -> [a] concat2 xs ys = foldr (:) ys xs
filter2 :: (a -> Bool) -> [a] -> [a] filter2 f xs = foldr (\x -> concat_if (f x) x) [] xs where concat_if f = if f then (:) else (\_ -> id)
map2 :: (a -> b) -> [a] -> [b] map2 f xs = foldr ((:) . f) [] xs
II
sumaAlt :: [Integer] -> Integer sumaAlt = foldalt (+) (-) 0
foldalt :: (a -> b -> b) -> (a -> b -> b) -> b -> [a] -> b foldalt _ _ b [] = b foldalt f g b (x:xs) = g x (foldalt g f b xs) OJO: USA RECURSIÓN EXPLÍCITA
(bis)
sumaAlt :: [Integer] -> Integer sumaAlt = foldr (-) 0
III
sumaAlt2:: [Integer] -> Integer sumaAlt2 xs = foldr (-) 0 (reverse xs)
Ejercicio 10
I
partes :: [a] -> a partes = foldr (\x partes -> partes ++ map (x:) partes) [[]]
II
prefijos :: [a] -> a prefijos = foldl (\pref x -> pref ++ [(pref !! (length pref - 1)) ++ [x]]) [[]]
bis
prefijos :: [a] -> a prefijos xs = [take i xs | i<-[0..length xs]]
III
sufijos :: [a] -> a sufijos = foldr (\x pref -> pref ++ [x:(pref !! (length pref - 1))]) [[]]
sublistas :: Eq a => [a] -> a sublistas xs = [] : filter (/= []) (prefijosDe (sufijos xs))
prefijosDe :: a -> a prefijosDe = foldr (\x suf -> prefijos x ++ suf) [[]]
(bis)
sufijos :: [a] -> a sufijos xs = [drop i xs | i<-[0..length xs]]
sublistas :: Eq a => [a] -> a sublistas xs = [] : filter (/= []) (concatMap prefijos (sufijos xs))
(bis bis)
sublistas:: Eq a => [a] -> [ [a] ] sublistas xs = nub [take i (drop j xs) | j <-[0..length xs], i <-[0..length xs]]
Ejercicio 11
I
sacarUna :: Eq a => a -> [a] -> [a] sacarUna x xs = fst(break (==x) xs) ++ tail(snd(break (==x) xs))
II
permutaciones :: Eq a=>[a]->a permutaciones [] = [[]] permutaciones xs = [x:xs2 | x<-xs, xs2<-(permutaciones (sacarUna x xs))]
Solución alternativa, sin recursión explícita
permutaciones :: [Char] -> [ [ Char ] ] permutaciones l = foldr (\head acum -> (concatMap (\perm -> [ (take i perm) ++ [head] ++ (drop i perm) | i <- [0..(length perm)] ]) acum)) [[]] l
Ejercicio 12
I
genLista :: Integer -> a -> (a -> a) -> [a] genLista n a f = foldr (\x ls -> if null ls then [a] else ls ++ [f (last ls)]) [] [1..n]
II
desdeHasta :: Integer -> Integer -> [Integer] desdeHasta d h = genLista (h-d) d (+1)
Ejercicio 13 (zip, zipWith)
I
mapPares :: (a -> a -> a) -> [(a,a)] -> [a] mapPares f xs = foldr ((:) . uncurry2 f) [] xs
II
Incorrecto:
armarPares :: [a] -> [a] -> [(a,a)] armarPares = foldr (\a armarAs (b:bs) -> (a,b):armarAs bs) (const [])
Problema: El codigo anterior no admite el caso armarPares _ [] Solucion:
armarPares :: [a] -> [a] -> [(a,a)] armarPares = foldr (\a armarAs bs -> if null bs then [] else (a,head bs):armarAs (tail bs) ) (const [])
III
mapDoble :: (a -> a -> a) -> [a] -> [a] -> [a] mapDoble f xs ys = mapPares f (armarPares xs ys)
Ejercicio 14
I
sumaMat :: Int -> Int -> Int sumaMat = foldr (\f1 sumarM1 (f2:m2) -> (zipWith (+) f1 f2) : sumarM1 m2) (const [])
(bis)
sumaMat :: Int -> Int -> Int sumaMat=zipWith (zipWith (+))
II
trasponer :: a -> a trasponer [] = [] trasponer ([]:m) = trasponer m trasponer ((h:f) : m) = (h : [hi | (hi:fi) <- m]) == Unir cabezas de filas : trasponer (f : [fi | (hi:fi) <- m]) == Continuar trasponiendo matriz (sin cabezas)
(bis)
trasponer :: a -> a trasponer mat = if null mat then [] else foldr (zipWith (:)) vacías mat where vacías = map (const []) (head mat)
(Usando zipWithList)
trasponer ::a->a trasponer = zipWithList (:) []
III
zipWithList::(a->b->b)->b->a->[b] zipWithList f c = foldr (\x y-> if null y then map (flip f c) x else zipWith f x y) []
(Usando trasponer)
zipWithList::(a->b->b)->b->a->[b] zipWithList f base xss = map (foldr f base) (trasponer xss)
Ejercicio 16
(divide and conquer)
dac :: b -> (a -> b) -> ([a] -> ([a],[a])) -> ([a] -> b -> b -> b) -> [a] -> b dac base base1 divide combine [] = base dac base base1 divide combine [x] = base1 x dac base base1 divide combine input = combine input (rec izquierda) (rec derecha) where rec = dac base base1 divide combine izquierda = fst (divide input) derecha = snd (divide input)
I
mapDac :: (a -> b) -> [a] -> [b] mapDac f xs = dac [] (\x -> [f x]) divide combine xs where divide = (\xs -> splitAt (length xs `div` 2) xs) combine xs as bs = as ++ bs
filterDac :: (a -> Bool) -> [a] -> [a] filterDac f xs = dac [] (\x -> if f x then [x] else []) divide combine xs where divide = (\xs -> splitAt (length xs `div` 2) xs) combine xs as bs = as ++ bs
II
mergeSort :: Ord a => [a] -> [a] mergeSort xs = dac [] (\x -> [x]) divide combine xs where divide = (\xs -> splitAt (length xs `div` 2) xs) combine xs as [] = as combine xs [] bs = bs combine xs (a:as) (b:bs) | a <= b = a : combine xs as (b:bs) | a > b = b : combine xs (a:as) bs
III
quickSort :: Ord a => [a] -> [a] quickSort xs = dac [] (\x -> [x]) divide combine xs where divide (x:xs) = qdivide x xs combine xs as [] = as combine xs [] bs = bs combine xs (a:as) (b:bs) | a <= b = (a:as) ++ (b:bs) | a > b = (b:bs) ++ (a:as) qdivide :: Ord a => a -> [a] -> ([a],[a]) qdivide x [] = ([], [x]) qdivide x (y:ys) | x >= y = (y : fst(qdivide x ys), snd(qdivide x ys)) | x < y = (fst(qdivide x ys), y : snd(qdivide x ys))
Ejercicio 17
I
foldNat :: (Integer -> Integer -> Integer) -> Integer -> Integer -> Integer foldNat f x 0 = x foldNat f x n = f x (foldNat f x (n-1))
II
potencia :: Integer -> Integer -> Integer potencia x = foldNat (\y res-> x * res) 1
Ejercicio 18
data Num a => Polinomio a = X | Cte a | Suma (Polinomio a) (Polinomio a) | Prod (Polinomio a) (Polinomio a)
foldPol :: Num a => b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> Polinomio a -> b foldPol f1 f2 f3 f4 X = f1 foldPol f1 f2 f3 f4 (Cte y) = f2 y foldPol f1 f2 f3 f4 (Suma p1 p2) = f3 (foldPol f1 f2 f3 f4 p1) (foldPol f1 f2 f3 f4 p2) foldPol f1 f2 f3 f4 (Prod p1 p2) = f4 (foldPol f1 f2 f3 f4 p1) (foldPol f1 f2 f3 f4 p2)
evaluar :: Num a => a -> Polinomio a -> a evaluar x p = (foldPol x (id) (+) (*) p) -- evaluar 8 (Suma (Cte 4) (Cte 70)) -- evaluar 5 (Suma (Prod (Cte 4) X) (Cte 8))
Ejercicio 19
type Conj a = (a -> Bool)
I
vacío :: Conj a vacío = const False
agregar :: Eq a => a -> Conj a -> Conj a agregar x c = \y -> (x == y || (c y))
II
union :: Conj a -> Conj a -> Conj a union a b = \x -> (a x || b x)
intersect :: Conj a -> Conj a -> Conj a intersect a b = \x -> (a x && b x) -- (intersect (add 2 (add 3 empty)) (add 3 (add 6 empty))) 3
III
Conjunto de funciones que aplicado a 3 da True
-- infinity (\x -> (x > 1)) -- infinity (\x -> (2*1+1 == x)) infinity :: Conj (Int -> Bool) infinity = \f -> f 3
IV
primeraAparición::a->[Conj a]->Int primeraAparición e xs = head ([i|i<-[0..],(xs!!i) e])
Ejercicio 20
data AHD tInterno tHoja = Hoja tHoja | Rama tInterno (AHD tInterno tHoja) | Bin (AHD tInterno tHoja) tInterno (AHD tInterno tHoja) deriving Show
I
foldAHD :: (tHoja -> b) -> (tInterno -> b -> b) -> (b -> tInterno -> b -> b) -> AHD tInterno tHoja -> b foldAHD f1 f2 f3 (Hoja x) = f1 x foldAHD f1 f2 f3 (Rama x a) = f2 x (foldAHD f1 f2 f3 a) foldAHD f1 f2 f3 (Bin a x b) = f3 (foldAHD f1 f2 f3 a) x (foldAHD f1 f2 f3 b)
II
mapAHD :: (a -> b) -> (c -> d) -> AHD a c -> AHD b d mapAHD fi fh = foldAHD (\x -> Hoja (fh x)) (\x a -> Rama (fi x) a) (\a x b -> Bin a (fi x) b) -- mapAHD (+1) not (Bin(Rama 1 (Hoja False)) 2 (Bin(Hoja False) 3 (Rama 5 (Hoja True)))) -- => (Bin (Rama 2 (Hoja True)) 3 (Bin (Hoja True) 4 (Rama 6 (Hoja False))))
III
hojasAHD :: AHD tInterno tHoja -> [tHoja] hojasAHD = foldAHD (\h -> [h]) (\_ a -> a) (\a x b -> a ++ b)
nodosInternos :: AHD tInterno tHoja -> [tInterno] nodosInternos = foldAHD (\_ -> []) (\x a -> ([x] ++ a)) (\a x b -> ([x] ++ a ++ b))
analizar :: Eq tHoja => AHD tInterno tHoja -> Either (tHoja -> Int) [tInterno] analizar a = if tieneRepetidas (hojasAHD a) then Left (\h -> countElem h (hojasAHD a)) else Right (nodosInternos a)
l (Left a) = a r (Right a) = a
-- l (analizar (Bin(Rama 1 (Hoja False)) 2 (Bin(Bin (Hoja False) 1 (Hoja False)) 3 (Rama 5 (Bin (Hoja True) 10 (Hoja True)))))) False -- r (analizar (Bin(Rama 1 (Hoja 'a')) 2 (Bin(Bin (Hoja 'b') 1 (Hoja 'c')) 3 (Rama 5 (Bin (Hoja 'd') 10 (Hoja 'e'))))))
Ejercicio 21
-- (BinAB Nil 3 (BinAB (BinAB Nil 2 Nil) 1 (BinAB Nil 4 Nil))) data AB a = Nil | BinAB (AB a) a (AB a) deriving Show
foldAB :: b -> (b -> a -> b -> b) -> AB a -> b foldAB cb f Nil = cb foldAB cb f (BinAB a x b) = f (foldAB cb f a) x (foldAB cb f b)
altura :: AB a -> Int altura = foldAB 0 (\a x b -> 1 + max a b)
nodos :: AB a -> Int nodos = foldAB 0 (\a x b -> 1 + a + b)
-- Éste está mal hojas :: AB a -> Int hojas = foldAB 0 (\a x -> (+1))
espejo :: AB a -> AB a espejo = foldAB Nil (\a x b -> BinAB b x a)