Final 18/09/2017 (Análisis II)

De Cuba-Wiki
Revisión del 23:19 18 sep 2017 de 181.228.202.48 (discusión) (Página creada con «== Ejercicio 1 == Sea <math>h:\mathbb{R}^2 \rightarrow\mathbb{R}</math> una función de clase <math>\mathcal{C}^3</math> tal que su polinomio de Taylor centrado en el (0,0)...»)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)

Ejercicio 1

Sea una función de clase tal que su polinomio de Taylor centrado en el (0,0) es . Sea dada por

  1. Probar que es punto crítico de g y clasificarlo.
  2. Sea una función tal que y vale que
  3. Probar que f tiene un mínimo local en (0,0).

Ejercicio 2

Sea una función continua tal que

  1. Probar que si
  2. Sea es cierto que:

Ejercicio 3

Sea continua, un intervalo abierto. Probar que si entonces intervalo abierto entorno de tal que .

Ejercicio 4

Sea un intervalo compacto. Probar que toda función continua es integrable.