Práctica 1: Conjuntos, relaciones y funciones (Álgebra I)
Ejercicio 1
Dado el conjunto A = {1,2,{3},{1,2},-1} determinar cuáles de las siguientes afirmaciones son verdaderas:
i) 3 ∈ A. FALSO
ii) {1,2} ⊆ A. VERDADERO
iii) {1,2} ∈ A. VERDADERO
iv) {3} ⊆ A. FALSO
v) { {3} } ⊆ A. VERDADERO
vi) Ø ∈ A. FALSO
vii) {-1,2} ⊆ A. VERDADERO
viii) Ø ⊆ A. VERDADERO
ix) {1,2,-1} ∈ A. FALSO
Ejercicio 2
Determinar si A ⊆ B en cada uno de los siguientes casos:
i) . NO ESTÁ INCLUÍDO.
ii) . NO ESTÁ INCLUIDO.
iii) ESTÁ INCLUÍDO
iv) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A = \left\{\emptyset \right\}; B=\emptyset }
. NO ESTÁ INCLUÍDO
v) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A = \left\{x \in \Re / 2 \leq |x| \leq 3 \right\} ; B = \left\{ x \in \Re / x^2 < 3 \right\} }
. NO ESTÁ INCLUÍDO.
Ejercicio 3
Dados los conjuntos A = {1,3,5,7,8,11} y B = {-1,3,-5,7,-8,11}. Hallar:
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \cap B = \left\{3,7,11 \right\}}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \cup B = \left\{-8,-5,-3,-1,1,3,5,7,8,11 \right\}}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A - B = \left\{1,5,8 \right\}}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle B - A = \left\{-1,-5,-8 \right\}}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \Delta B = \left\{-8,-5,-1,1,5,8 \right\} }
Ejercicio 4
Dado el conjunto referencial Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle V = \left\{ n \in N | n\;es\;multiplo\;de\;15 \right\}} hallar el comlpemento del subconjunto A de V definido por Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A = \left\{ n \in N | n \leq 132 \right\}}
Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A' = \left\{ 15,60,45,60,75,90,105,120 \right\} }
Ejercicio 5
Dado el conjunto referencial V = {1, {3}, -2, 7, 10, {1,2,3}, 3} y dados los subconjuntos A = {1, -2, 7, 3}, B= {1, {3}, 10} y C = {-2, {1,2,3}, 3} hallar:
i) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A \cap ( B \Delta C )= \left\{ 1,-2,3 \right\} }
ii) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle ( A \Delta B ) - C = \left\{ 7, \left\{3 \right\} , 10 \right\} }
iii) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle ( A - B) \cap C = \left\{ -2, 3 \right\} }
iv) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle ( A \cup B' ) \cap C = \left\{ -2, \left\{1,2,3 \right\} , 3 \right\} }
v) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle A' \cap B' \cap C' = \emptyset }
vi) Error al representar (SVG o PNG como alternativa (MathML puede ser habilitado mediante plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle ( A - B' ) \Delta C = \left\{ 1, -2, \left\{ 1, 2, 3 \right\} , 3 \right\} }
Ejercicio 6
En un grupo de 110 alumnos hay 63 alumnos que estudian inglés, 30 que estudian alemán y 50 que estudian francés. Sabiendo que hay 7 alumnos que estudian los tres idiomas, 30 que sólo estudian inglés, 13 que sólo estudian alemán y 25 que sólo estudian francés, determinar
i) ¿Cuántos alumnos estudian exactamente dos idiomas? ii) ¿Cuántos alumnos estudian inglés y alemán pero no francés? iii) ¿Cuántos alumnos estudian alemán y grancés pero no inglés? iv) ¿Cuántos alumnos estudian inglés y francés pero no alemán? v) ¿Cuántos alumnos no estudian ningún idioma?
i) 41
ii) 9
iii) 1
iv) 17
v) 8