Diferencia entre revisiones de «Métodos Numéricos»

De Cuba-Wiki
(Agrego 3 primer parciales y 2 recuperatorios de primer parcial.)
mSin resumen de edición
Línea 3: Línea 3:
Históricamente, esta materia se cursa los Lunes, Miércoles y Viernes a la noche.
Históricamente, esta materia se cursa los Lunes, Miércoles y Viernes a la noche.


==Información General sobre la Cursada==
==Información general sobre la cursada==
Métodos Numéricos consiste de una cursada teórica, una práctica y una de laboratorio.
Métodos Numéricos consiste de una cursada teórica, una práctica y una de laboratorio.


Línea 25: Línea 25:
*[[Integración Numérica (Métodos Numéricos)| Integración numérica]]: Métodos basados en interpolación.
*[[Integración Numérica (Métodos Numéricos)| Integración numérica]]: Métodos basados en interpolación.


==Prácticas==
==Guías prácticas con soluciones==
* [[Práctica 1 (Métodos Numéricos)|Práctica 1: Elementos de Álgebra lineal]]
* [[Práctica 1 (Métodos Numéricos)|Práctica 1: Elementos de Álgebra lineal]]
* [[Práctica 2 (Métodos Numéricos)|Práctica 2: Sistemas de Ecuaciones Lineales]]
* [[Práctica 2 (Métodos Numéricos)|Práctica 2: Sistemas de Ecuaciones Lineales]]
Línea 107: Línea 107:
*[[Medio: MetNum_3parcial_29-06-15.jpg|Tercer Parcial del 29/06/2015]] [[Medio: MetNum_3parcial_29-06-15_ej2.jpg|ej2]]
*[[Medio: MetNum_3parcial_29-06-15.jpg|Tercer Parcial del 29/06/2015]] [[Medio: MetNum_3parcial_29-06-15_ej2.jpg|ej2]]


==Bibliografía Recomendada==
==Bibliografía recomendada==
*R. Burden y J.D.Faires, ''Análisis numérico'', International Thomson Editors, 1998 ("El Burden") ('''Circulante 519 600 Burden''' en la [[Biblioteca Central]]); libro básico para seguir la materia.
*R. Burden y J.D.Faires, ''Análisis numérico'', International Thomson Editors, 1998 ("El Burden") ('''Circulante 519 600 Burden''' en la [[Biblioteca Central]]); libro básico para seguir la materia.
*G. Strang, ''Linear algebra and its applications'', Harcourt Brace Jovanovich, 1988 ('''Circulante 512 640 Strang''' en la [[Biblioteca Central]])
*G. Strang, ''Linear algebra and its applications'', Harcourt Brace Jovanovich, 1988 ('''Circulante 512 640 Strang''' en la [[Biblioteca Central]])
Línea 115: Línea 115:
*D. Watkins, ''Fundamentals of matrix computations'', John Wiley & Sons, 1991; libro muy bueno para cuadrados mínimos y factorizaciones QR y SVD; se puede encontrar en la infoteca.
*D. Watkins, ''Fundamentals of matrix computations'', John Wiley & Sons, 1991; libro muy bueno para cuadrados mínimos y factorizaciones QR y SVD; se puede encontrar en la infoteca.


== Videografía Recomendada ==
== Videografía recomendada ==
* [http://www.youtube.com/view_play_list?p=E7DDD91010BC51F8 Clases del MIT de Álgebra Lineal] dadas por [http://en.wikipedia.org/wiki/Gilbert_Strang Gilbert Strang]. Un capo la verdad, hay muchas clases que valen la pena, tienen que ver con los contenidos de la materia y estan muy bien explicadas.
* [http://www.youtube.com/view_play_list?p=E7DDD91010BC51F8 Clases del MIT de Álgebra Lineal] dadas por [http://en.wikipedia.org/wiki/Gilbert_Strang Gilbert Strang]. Un capo la verdad, hay muchas clases que valen la pena, tienen que ver con los contenidos de la materia y estan muy bien explicadas.


* [http://nm.mathforcollege.com/ Holistic Numerical Methods (MathForCollege.com / University of South Florida)]. Material muy completo sobre casi todos los contenidos de la materia. No son clases filmadas, sino videos explicando cada tema y videos con ejemplos de cada tema por separado. Tiene subtítulos en inglés. También hay autoevaluaciones de múltiple opción y archivos para MatLab.
* [http://nm.mathforcollege.com/ Holistic Numerical Methods (MathForCollege.com / University of South Florida)]. Material muy completo sobre casi todos los contenidos de la materia. No son clases filmadas, sino videos explicando cada tema y videos con ejemplos de cada tema por separado. Tiene subtítulos en inglés. También hay autoevaluaciones de múltiple opción y archivos para MatLab.


==Enlaces Externos==
==Enlaces externos==
*[http://www.dc.uba.ar/people/materias/metnum Página oficial de la Materia]
*[http://www.dc.uba.ar/people/materias/metnum Página oficial de la Materia]
*[http://www.ana.iusiani.ulpgc.es/metodos_numericos/document/apuntes/Parte_2.pdf Apunte con fórmulas útiles]
*[http://www.ana.iusiani.ulpgc.es/metodos_numericos/document/apuntes/Parte_2.pdf Apunte con fórmulas útiles]

Revisión del 00:42 25 ene 2017

Métodos Numéricos es una materia dedicada al estudio de los problemas numéricos, su tratamiento y su resolución óptima. Pertenece al área de Métodos Numéricos y, según el Plan de la Carrera, es una materia a ser cursada en Segundo año. Es correlativa de Probabilidades y Estadística.

Históricamente, esta materia se cursa los Lunes, Miércoles y Viernes a la noche.

Información general sobre la cursada

Métodos Numéricos consiste de una cursada teórica, una práctica y una de laboratorio.

Para aprobar la práctica deben rendirse 3 Parciales. Las fechas de recuperatorio son después del tercer parcial.

Para aprobar la parte de laboratorio deben realizarse 3 Trabajos Prácticos, cuyas fechas de entrega son, en general, una semana antes de cada parcial. Los trabajos son en grupos de hasta 3 personas.

Una característica particular de Métodos Numéricos es que la cátedra permite aprobar los parciales y los trabajos prácticos en el plazo de 2 cuatrimestres consecutivos.

La materia se aprueba rindiendo un Final obligatorio.

Programa

Guías prácticas con soluciones

Finales

El final de esta materia consiste en hacer un desarollo escrito completo, sobre cuatro temas de la materia (la eleccion de los temas depende de la profesora, no del alumno). Se tienen 3 horas para realizar dicho desarrollo. Los temas que entran en los finales actualmente son los siguientes:

  • Aritmética de la computadora. Representación de números. Error de redondeo y truncamiento. Error relativo y absoluto. Operaciones aritméticas. Algoritmos. Estabilidad y convergencia.
  • Resolución de sistemas lineales. Eliminación gaussiana y descomposición LU. Estrategias de pivoteo. Análisis de error. Numero de condición.
  • Resolución de sistemas lineales con matrices especiales: simétricas, banda, simétricas definidas positivas, con menores principales no singulares.
  • Métodos iterativos para resolver sistemas lineales: Jacobi, Gauss-Seidel, SOR, gradientes conjugados.
  • Descomposición QR. Algoritmo de ortogonalización de Gram-Schmidt, rotaciones de Givens, reflexiones de Householder.
  • Cálculo de autovalores. Teorema de los círculos de Gerschgorin, algoritmo QR, método de potencias, método de potencias inverso.
  • Interpolación. Polinomio interpolador de Lagrange, algoritmo de Neville, diferencias divididas de Newton. Splines cúbicos.
  • Aproximación por cuadrados mínimos lineales. Idea geométrica. Existencia y unicidad. Resolución con ecuaciones normales, descomposición QR y SVD.
  • Algoritmos para resolver ecuaciones no lineales en una variable (AKA Ceros de funciones). Métodos de Bisección, Punto Fijo, Newton-Raphson, Secante, Regula Falsi.
  • Resolución de sistemas no lineales. Metodos de Newton, Newton modificado, Broyden.


Por ejemplo:

  • 27/12/2010: factorización LU, matrices especiales, ceros de funciones.
  • 22/02/2011: aritmética finita, cálculo de autovalores, interpolación, cuadrados mínimos.
  • 07/03/2013:
    • Tema 1: Cuadrados Minimos, QR, Direcciones Conjugadas, Splines.
    • Tema 2: Cuadrados Minimos, LU, Direcciones Conjugadas, Métodos Iterativos.
  • 09/12/2015: cuadrados mínimos, QR, ceros de funciones, LU
  • 02/08/2016: Cuadrados Mínimos, LU, Simplex
  • 08/09/2016: Cuadrados mínimos, interpolación, ceros de funciones

Apuntes

TP

Parciales

Primeros parciales

Segundos parciales

Terceros parciales

Bibliografía recomendada

  • R. Burden y J.D.Faires, Análisis numérico, International Thomson Editors, 1998 ("El Burden") (Circulante 519 600 Burden en la Biblioteca Central); libro básico para seguir la materia.
  • G. Strang, Linear algebra and its applications, Harcourt Brace Jovanovich, 1988 (Circulante 512 640 Strang en la Biblioteca Central)
  • V. Chvatal, Linear programming, Freeman, 1983; libro para Simplex, capitulos 2, 3, 7.
  • G.H. Golub y C.F. van Loan, Matrix computations, The Johns Hopkins University Press, Baltimore, 1991; libro con algoritmos útil para el laboratorio.
  • J. Nocedal and S. Wright, Numerical optimization, Springer Verlag, 1999; libro muy útil para sistemas de ecuaciones no lineales y especialmente direcciones conjugadas; se puede encontrar en la infoteca.
  • D. Watkins, Fundamentals of matrix computations, John Wiley & Sons, 1991; libro muy bueno para cuadrados mínimos y factorizaciones QR y SVD; se puede encontrar en la infoteca.

Videografía recomendada

Enlaces externos